Método de decomposição de Benders generalizado para seleção estocástica de portfólios.

Nenhuma Miniatura Disponível

Data

2023

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

Este trabalho aborda o Problema de Seleção de Portfólios de Média-Variância. O problema contém um conjunto de ativos financeiros, no qual cada ativo possui um peso associado a sua escolha e um valor de retorno. O Retorno é obtido pela média dos retornos passados dos ativos ponderados pelos respectivos pesos. Outro parâmetro considerado no problema é o risco associado a cada ativo, obtido pela matriz variância-covariância. O objetivo é encon- trar a melhor combinação dos ativos ponderados pelos pesos associados, buscando reduzir o risco e aumentar o retorno. Para resolver o problema eficientemente, foram utilizados os algoritmos Conjunto Ativo e o Método de Projeção em Caixa. Além disso, foi utilizada uma técnica de pré-processamento para redução do tamanho da instância. Também, foi proposta uma reformulação do problema, utilizando-se a versão estocástica do Método de Decomposição de Benders Generalizado. Resultados computacionais mostraram a superio- ridade do Método de Projeção em Caixa em relação ao Algoritmo do Conjunto Ativo. Capaz de resolver instâncias com até 1.200 ativos, o Método de Projeção em Caixa superou o Algoritmo do Conjunto Ativo em tempo de solução e número de iterações, sendo 83 vezes mais rápido que o Algoritmo do Conjunto Ativo considerando o pior caso. Adicionalmente, as soluções derivadas do Método de Projeção em Caixa foram confrontadas com aquelas geradas pelo resolvedor de Programação Quadrática do Gurobi. Os resultados revelaram que o maior desvio observado pelo Método de Projeção em Caixa foi da ordem de 10−9 . Além disso, o código do Método de Projeção em Caixa, quando integrado ao Método de Decomposição de Benders Generalizado, foi testado e comparado com o software Gurobi considerando uma instância composta por 50 ativos e 500 cenários. O Método de Projeção em Caixa apresentou tempos de solução inferiores em comparação com aqueles obtidos pelo resolvedor de Programação Quadrática do Gurobi.

Descrição

Programa de Pós-Graduação em Engenharia de Produção. Departamento de Engenharia de Produção, Instituto de Ciências Exatas e Aplicadas, Universidade Federal de Ouro Preto.

Palavras-chave

Algoritmo - conjunto ativo, Projeção em caixa, Decomposição de Benders generalizado DBG, Processo estocástico

Citação

BARCELOS, Braulio Frances. Método de decomposição de Benders generalizado para seleção estocástica de portfólios. 2023. 60 f. Dissertação (Mestrado em Engenharia de Produção) – Instituto de Ciências Exatas e Aplicadas, Universidade Federal de Ouro Preto, João Monlevade, 2023.

Avaliação

Revisão

Suplementado Por

Referenciado Por

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como aberto