Rage : a novel strategy for solving non-polynomial problems through the random generation of solutions and incremental reduction of the number of candidates : a case study applied to the design of the network infrastructure for connected vehicles.
Nenhuma Miniatura Disponível
Data
2023
Título da Revista
ISSN da Revista
Título de Volume
Editor
Resumo
This work presents RAGE, a novel strategy designed for solving combinatorial optimization problems where we
intend to select a subset of elements from a very large set of candidates. For solving the combinatorial problem,
RAGE generates a customizable number of random solutions, computes the objective function for each solution,
and then scores each candidate element in terms of the value returned by the objective function. After that,
RAGE removes a customizable number of candidate elements presenting the smallest score when considering
all solutions generated. This cycle is called one iteration. The heuristic loops performing iterations until there
are left the exact number of candidates that we are looking for. In order to evaluate the efficiency of RAGE, we
perform experiments showing how RAGE behaves when we change the number of random solutions generated
per round, and the number of candidate elements removed per round. Finally, we apply RAGE for solving an
NP-Hard problem related to the allocation of infrastructure for vehicular communication. The results show that
RAGE requires 40,000 evaluations of the objective function to achieve the same result found by the baseline
using 175,000 evaluations of the objective function, which, in this case study, represents a drastic reduction
of the computational overhead in order to reach the same target.
Descrição
Palavras-chave
Computer networks, Vehicular networks, Infrastructure design
Citação
SILVA, C. M. da et al. Rage: a novel strategy for solving non-polynomial problems through the random generation of solutions and incremental reduction of the number of candidates: a case study applied to the design of the network infrastructure for connected vehicles. Expert Systems With Applications, v. 213, 2023. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0957417422019182>. Acesso em: 06 jul. 2023.