A fuzzy data reduction cluster method based on boundary information for large datasets.

dc.contributor.authorSilva, Gustavo Rodrigues Lacerda
dc.contributor.authorCirino Neto, Paulo
dc.contributor.authorTorres, Luiz Carlos Bambirra
dc.contributor.authorBraga, Antônio de Pádua
dc.date.accessioned2022-09-15T20:37:15Z
dc.date.available2022-09-15T20:37:15Z
dc.date.issued2019pt_BR
dc.description.abstractThe fuzzy c-means algorithm (FCM) is aimed at computing the membership degree of each data point to its corresponding cluster center. This computation needs to calculate the distance matrix between the cluster center and the data point. The main bottleneck of the FCM algorithm is the computing of the membership matrix for all data points. This work presents a new clustering method, the bdrFCM (boundary data reduction fuzzy c-means). Our algorithm is based on the original FCM proposal, adapted to detect and remove the boundary regions of clusters. Our implementation efforts are directed in two aspects: processing large datasets in less time and reducing the data volume, maintaining the quality of the clusters. A significant volume of real data application ([106 records) was used, and we identified that bdrFCM implementation has good scalability to handle datasets with millions of data points.pt_BR
dc.identifier.citationSILVA, G. R. L. et al. A fuzzy data reduction cluster method based on boundary information for large datasets. Neural Computing & Applications, v. 32, p. 18059-18068, 2019. Disponível em: <https://link.springer.com/article/10.1007/s00521-019-04049-4>. Acesso em: 29 abr. 2022.pt_BR
dc.identifier.doihttps://doi.org/10.1007/s00521-019-04049-4pt_BR
dc.identifier.issn1433-3058
dc.identifier.urihttp://www.repositorio.ufop.br/jspui/handle/123456789/15309
dc.identifier.uri2https://link.springer.com/article/10.1007/s00521-019-04049-4pt_BR
dc.language.isoen_USpt_BR
dc.rightsrestritopt_BR
dc.subjectFuzzy c-meanspt_BR
dc.titleA fuzzy data reduction cluster method based on boundary information for large datasets.pt_BR
dc.typeArtigo publicado em periodicopt_BR

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
ARTIGO_FuzzyDataReduction.pdf
Tamanho:
2.17 MB
Formato:
Adobe Portable Document Format
Descrição:

Licença do pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: