A fuzzy data reduction cluster method based on boundary information for large datasets.

Nenhuma Miniatura Disponível

Data

2019

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

The fuzzy c-means algorithm (FCM) is aimed at computing the membership degree of each data point to its corresponding cluster center. This computation needs to calculate the distance matrix between the cluster center and the data point. The main bottleneck of the FCM algorithm is the computing of the membership matrix for all data points. This work presents a new clustering method, the bdrFCM (boundary data reduction fuzzy c-means). Our algorithm is based on the original FCM proposal, adapted to detect and remove the boundary regions of clusters. Our implementation efforts are directed in two aspects: processing large datasets in less time and reducing the data volume, maintaining the quality of the clusters. A significant volume of real data application ([106 records) was used, and we identified that bdrFCM implementation has good scalability to handle datasets with millions of data points.

Descrição

Palavras-chave

Fuzzy c-means

Citação

SILVA, G. R. L. et al. A fuzzy data reduction cluster method based on boundary information for large datasets. Neural Computing & Applications, v. 32, p. 18059-18068, 2019. Disponível em: <https://link.springer.com/article/10.1007/s00521-019-04049-4>. Acesso em: 29 abr. 2022.

Avaliação

Revisão

Suplementado Por

Referenciado Por