The pollutant organotins leads to respiratory disease by inflammation : a mini-review.

dc.contributor.authorSilva, Albená Nunes da
dc.contributor.authorDittz, Dalton
dc.contributor.authorSantana, Higor Scardini
dc.contributor.authorFaria, Rodrigo Alves
dc.contributor.authorFreitas, Katia Michelle
dc.contributor.authorCoutinho, Christiane Rabelo
dc.contributor.authorRodrigues, Livia Carla de Melo
dc.contributor.authorAlves, Leandro Miranda
dc.contributor.authorSilva, Ian Victor
dc.contributor.authorGraceli, Jones Bernardes
dc.contributor.authorLima, Leandro Ceotto Freitas
dc.date.accessioned2018-04-11T12:17:36Z
dc.date.available2018-04-11T12:17:36Z
dc.date.issued2018
dc.description.abstractOrganotins (OTs) are organometallic pollutants. The OTs are organometallic pollutants that are used in many industrial, agricultural, and domestic products, and it works as powerful biocidal compound against large types of microorganisms such as fungi and bacteria. In addition, OTs are well known to be endocrine-disrupting chemicals, leading abnormalities an “imposex” phenomenon in the female mollusks. There are some studies showing that OTs’ exposure is responsible for neural, endocrine, and reproductive dysfunctions in vitro and in vivo models. However, OTs’ effects over the mammalian immune system are poorly understood, particularly in respiratory diseases. The immune system, as well as their cellular components, performs a pivotal role in the control of the several physiologic functions, and in the maintenance and recovery of homeostasis. Thus, it is becoming important to better understand the association between environmental contaminants, as OTs, and the physiological function of immune system. There are no many scientific works studying the relationship between OTs and respiratory disease, especially about immune system activation. Herein, we reported studies in animal, humans, and in vitro models. We searched studies in PUBMED, LILACS, and Scielo platforms. Studies have reported that OTs exposure was able to suppress T helper 1 (Th1) and exacerbate T helper 2 (Th2) response in the immune system. In addition, OTs’ contact could elevate in the airway inflammatory response, throughout a mechanism associated with the apoptosis of T-regulatory cells and increased oxidative stress response. In addition, OTs induce macrophage recruitment to the tissue, leading to the increased necrosis, which stimulates an inflammatory cytokines secretion exacerbating the local inflammation and tissue function loss. Thus, the main intention of this mini-review is to up to date the main findings involving the inflammatory profile (especially Th1 and Th2 response) in the respiratory tract as a result of OTs’ exposure.pt_BR
dc.identifier.citationSILVA, A. N. da et al. The pollutant organotins leads to respiratory disease by inflammation : a mini-review. Frontiers in Endocrinology, v. 8, p. 1-6, 2018. Disponível em: <https://www.frontiersin.org/articles/10.3389/fendo.2017.00369/full>. Acesso em: 05 abr. 2018.pt_BR
dc.identifier.issn16642392
dc.identifier.urihttp://www.repositorio.ufop.br/handle/123456789/9839
dc.language.isoen_USpt_BR
dc.rightsabertopt_BR
dc.rights.licenseThis is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). Fonte: o próprio artigo.pt_BR
dc.subjectAirway diseasept_BR
dc.subjectOrganotin compoundspt_BR
dc.subjectEndocrine-disrupting chemicalspt_BR
dc.subjectInflammationpt_BR
dc.titleThe pollutant organotins leads to respiratory disease by inflammation : a mini-review.pt_BR
dc.typeArtigo publicado em periodicopt_BR
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
ARTIGO_PollutantOrganotinLeads.pdf
Tamanho:
128.76 KB
Formato:
Adobe Portable Document Format
Licença do Pacote
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
924 B
Formato:
Item-specific license agreed upon to submission
Descrição: