DEFAR - Departamento de Farmácia

URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/530

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 5 de 5
  • Item
    Vaccination with formulation of nanoparticles loaded with Leishmania amazonensis antigens confers protection against experimental visceral leishmaniasis in hamster.
    (2023) Cabrera González, Marco Antonio; Gonçalves, Ana Alice Maia; Ottino, Jennifer; Leite, Jaqueline Costa; Resende, Lucilene Aparecida; Melo Júnior, Otoni Alves de Oliveira; Silveira, Patricia; Cardoso, Mariana Santos; Fujiwara, Ricardo Toshio; Bueno, Lilian Lacerda; Santos, Renato Lima; Carvalho, Tatiane Furtado de; Garcia, Giani Martins; Paes, Paulo Ricardo de Oliveira; Galdino, Alexsandro Sobreira; Chávez Fumagalli, Miguel Angel; Melo, Marilia Martins; Lemos, Denise da Silveira; Martins Filho, Olindo Assis; Dutra, Walderez Ornelas; Mosqueira, Vanessa Carla Furtado; Giunchetti, Rodolfo Cordeiro
    Visceral leishmaniasis (VL) is a fatal disease caused by the protozoa Leishmania infantum for which dogs are the main reservoirs. A vaccine against canine visceral leishmaniasis (CVL) could be an important tool in the control of human and CVL by reducing the infection pressure of L. infantum. Despite the CVL vaccine available on the market, the Brazilian Ministry of Health did not implement the use of it in their control programs. In this sense, there is an urgent need to develop more efficient vaccines. In this study, the association between two polymeric nanoformulations, (poly (D, L-lactic) acid (PLA) polymer) loading Leishmania amazonensis antigens, was evaluated as a potential immunobiological agent against VL using golden hamsters as an experimental model. The results indicated that no significant adverse reactions were observed in animals vaccinated with LAPSmP. LAPSmP presented similar levels of total anti-Leishmania IgG as compared to LAPSmG. The LAPSmP and LAPSmG groups showed an intense reduction in liver and spleen parasitic load by qPCR. The LAPSmP and LAPSmG vaccines showed exceptional results, indicating that they may be promising candidates as a VL vaccine.
  • Item
    Nanoformulations with Leishmania braziliensis antigens triggered controlled parasite burden in vaccinated golden hamster (Mesocricetus auratus) against visceral leishmaniasis.
    (2022) Ottino, Jennifer; Leite, Jaqueline Costa; Melo Júnior, Otoni Alves de Oliveira; Cabrera González, Marco Antonio; Carvalho, Tatiane Furtado de; Garcia, Giani Martins; Batista, Maurício Azevedo; Silveira, Patrícia; Cardoso, Mariana Santos; Bueno, Lilian Lacerda; Fujiwara, Ricardo Toshio; Santos, Renato Lima; Paes, Paulo Ricardo de Oliveira; Lemos, Denise da Silveira; Martins Filho, Olindo Assis; Galdino, Alexsandro Sobreira; Chávez Fumagalli, Miguel Angel; Dutra, Walderez Ornelas; Mosqueira, Vanessa Carla Furtado; Giunchetti, Rodolfo Cordeiro
    Leishmaniasis is a widespread vector-borne disease in Brazil, with Leishmania (Leishmania) infantum as the primary etiological agent of visceral leishmaniasis (VL). Dogs are considered the main reservoir of this parasite, whose treatment in Brazil is restricted to the use of veterinary medicines, which do not promote a parasitological cure. Therefore, efficient vaccine development is the best approach to Canine Visceral Leishmaniasis (CVL) control. With this in mind, this study used hamsters (Mesocricetus auratus) as an experimental model in an anti-Leishmania preclinical vaccine trial to evaluate the safety, antigenicity, humoral response, and effects on tissue parasite load. Two novel formulations of nanoparticles made from poly(D, L-lactic) acid (PLA) polymer loading Leishmania braziliensis crude antigen (LB) exhibiting two different particle sizes were utilized: LBPSmG (570 nm) and LBPSmP (388 nm). The results showed that the nanoparticles were safe and harmless to hamsters and were antigenic with the induction in LBSap, LBPSmG, and LBPSmG groups of total anti-Leishmania IgG antibodies 30 days after challenge, which persists 200 days in LBSap and LBPSmP. At the same time, a less pronounced hepatosplenomegaly in LBSap, LBPSmG, and LBPSmP was found when compared to control groups, as well as a less pronounced inflammatory infiltrate and granuloma formation in the spleen. Furthermore, significant reductions of 84%, 81%, and 90% were observed in spleen parasite burden accessed by qPCR in the LBSap, LBPSmG, and LBPSmP groups, respectively. In this way, LBSap, LBPSmG, and LBPSmP formulations showed better results in vaccinated and L. infantum-challenged animals in further reducing parasitic load in the spleen and attenuating lesions in liver and splenic tissues. This results in safe, harmless nanoformulation vaccines with significant immunogenic and infection control potential. In addition, animals vaccinated with LBPSmP had an overall reduction in parasite burden in the spleen, indicating that a smaller nanoparticle could be more efficient in targeting antigen-presenting cells.
  • Item
    Association of water extract of green propolis and liposomal meglumine antimoniate in the treatment of experimental visceral leishmaniasis.
    (2014) Ferreira, Flávia Monteiro; Castro, Renata Alves de Oliveira e; Batista, Maurício Azevedo; Rossi, Fernanda Mendes de Oliveira; Lemos, Denise da Silveira; Frezard, Frederic Jean Georges; Moura, Sandra Aparecida Lima de; Rezende, Simone Aparecida
    This work investigated the use of water extract of green propolis (WEP) and its association with free or liposomal meglumine antimoniate (MA) for the treatment of murine visceral leishmaniasis. Mice infected with Leishmania infantum were treated with oral doses of WEP associated or not with a single dose of liposomal MA by intraperitoneal route. Parasite burden was assessed in the liver and spleen by limiting dilution assay, and alterations in the spleen cellular phenotype were evaluated by flow cytometry. Tissue damage was assessed by determination of biochemical markers of the liver, heart, and kidney function and histopathological analysis of the liver and spleen. Our data showed that treatmentwith WEP was able to reduce parasite load in the liver but not in the spleen. On the other hand, liposomal MA reduced parasite load in both organs. Unexpectedly, there was no synergism with the combination of WEP and liposomal MA in reducing the parasite load. The histopathological analysis showed that administration of WEP, liposomal MA, or their association was able to protect the liver and spleen fromlesions caused by infection. No alteration in the profile of spleen cells by flow cytometry or in the liver, heart, and kidney functions by biochemical markers due to any of the treatments was observed. These results demonstrate that althoughWEP was able to significantly reduce the liver parasite load, its association with liposomalMA did not lead to significant improvement in reducing parasite load. On the other hand, treatment with WEP and/or liposomal MA protected the liver and spleen from lesions caused by the infection.
  • Item
    Evaluation of a prototype flow cytometry test for serodiagnosis of canine visceral leishmaniasis.
    (2013) Ker, Henrique Gama; Vital, Wendel Coura; Soares, Rodrigo Dian de Oliveira Aguiar; Roatt, Bruno Mendes; Moreira, Nádia das Dores; Carneiro, Cláudia Martins; Machado, Evandro Marques de Menezes; Carvalho, Andréa Teixeira de; Martins Filho, Olindo Assis; Giunchetti, Rodolfo Cordeiro; Araújo, Márcio Sobreira Silva; Coelho, Eduardo Antônio Ferraz; Lemos, Denise da Silveira; Reis, Alexandre Barbosa
    Canine visceral leishmaniasis (CVL) is considered one of the most important canine protozoan diseases of zoonotic concern (1). Various species of Phlebotomus and Lutzomyia sandflies are the potential vectors for the pathogenic agent Leishmania infantum (2). In some European, Asian, and African countries and in America, infection in dogs is associated with a risk of human disease (3–5). In Brazil, the Ministry of Health, through the Visceral Leishmaniasis Control and Surveillance Program (VLCSP), has instituted specific measures to reduce morbidity and case fatality rates, including treating human cases, instituting vector control, and, an action that is unique in the world, sacrificing all seropositive/infected dogs and prohibiting the treatment of CVL (6). During the last decade, the criteria for eliminating infected animals were based on enzyme-linked immunosorbent assays (ELISAs) for screening and indirect immunofluorescence antibody tests (IFATs) for the confirmatory diagnosis of CVL (6, 7). That these tests may lead to false-positive results due to crossreactivity with other parasitic diseases is well known (8, 9). Recently, this approach was modified, and testing is now based on a dual-path platform (DPP) for screening and an ELISA for confirmation (10). However, Grimaldi et al. (11) evaluated the DPP test for the serodiagnosis of CVL and showed that it does not perform well in detecting asymptomatic dogs from areas where canine disease is endemic. It has been shown that vaccination with Leishmune may lead to seroconversion in healthy dogs (10). The vaccination of dogs has increasingly become a common practice in areas in Brazil where CVL is endemic; recently, in addition to the Leishmune vaccine, the Leish-Tec vaccine has become available commercially, and new candidates, such as the LBSap vaccine, are being studied (12– 15). In this sense, seroconversion has become an important problem for surveillance/control programs that employ conventional methodologies in their seroepidemiological surveys, because it can lead to the unnecessary euthanasia of healthy dogs. Nevertheless, the role of vaccination in the diagnosis of CVL still has not been studied sufficiently.
  • Item
    Protective effect of ions against cell death induced by acid stress in Saccharomyces.
    (2009) Sant'Ana, Gilzeane dos Santos; Paes, Lisvane da Silva; Paiva, Argentino F. Vieira; Fietto, Luciano Gomes; Tótola, Antônio Helvécio; Trópia, Maria José Magalhães; Lemos, Denise da Silveira; Lucas, Cândida Manuel Ribeiro Simões; Fietto, Juliana Lopes Rangel; Brandão, Rogélio Lopes; Castro, Ieso de Miranda
    Saccharomyces boulardii is a probiotic used to prevent or treat antibiotic-induced gastrointestinal disorders and acute enteritis. For probiotics to be effective they must first be able to survive the harsh gastrointestinal environment. In this work, we show that S. boulardii displayed the greatest tolerance to simulated gastric environments compared with several Saccharomyces cerevisiae strains tested. Under these conditions, a pH 2.0 was the main factor responsible for decreased cell viability. Importantly, the addition of low concentrations of sodium chloride (NaCl) protected cells in acidic conditions more effectively than other salts. In the absence of S. boulardii mutants, the protective effects of Na1 in yeast viability in acidic conditions was tested using S. cerevisiae Na1-ATPases (ena1-4), Na1/H1 antiporter (nha1D) and Na1/H1 antiporter prevacuolar (nhx1D) null mutants, respectively. Moreover, we provide evidence suggesting that this protection is determined by the plasma membrane potential, once altered by low pH and low NaCl concentrations. Additionally, the absence or low expression/activity of Ena proteins seems to be closely related to the basal membrane potential of the cells.