DEFAR - Departamento de Farmácia

URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/530

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 6 de 6
  • Item
    Mapping of brain activity in the analgesia induced by Phα1β and morphine.
    (2022) Diniz, Danuza Montijo; Malamut, Carlos; Araújo, Marina Rios; Ferreira, Andréa Vidal; Silva, Juliana Figueira; Cordeiro, Marta do Nascimento; Borges, Marcia Helena; Silva, Marco Aurélio Romano; Gomez, Marcus Vinicius; Castro Junior, Célio José de
    Preclinical evidence suggests the potential of Phα1β, a toxin obtained from the venom of spider Phoneutria nigriventer, as a new analgesic drug. Molecular brain imaging techniques have afforded exciting opportunities to examine brain processes in clinical pain conditions. This paper aims to study the brain regions involved in the analgesic effects of Phα1β compared with Morphine, in a model of acute pain induced by formalin in Sprague Dawley rats. We used 18F-fluorodeoxyglucose as a metabolic radiotracer to perform brain imaging of rats pretreated with Phα1β or Morphine in a model of acute inflammatory pain caused by intraplantar injection of formalin. The rats’ hind paw’s formalin stimulation resulted in a brain metabolic increase at the bilateral motor cortex, visual cortex, somatosensory cortex, thalamus, and cingulate cortex.In rats treated with Phα1β, selective inhibition of unilateral motor cortex and cingulate cortex was observed. Morphine treatment leads to small and selective inhibition at the bilateral amygdala striatum and accumbens. Our results indicate that the analgesic effect of Phα1β and Morphine possesses a differential profile of central processing in the pain state.
  • Item
    The inhibitory efect of Phα1β toxin on diabetic neuropathic pain involves the CXCR4 chemokine receptor.
    (2020) Silva Júnior, Cláudio Antônio da; Castro Junior, Célio José de; Pereira, Elizete Maria Rita; Binda, Nancy Scardua; Silva, Juliana Figueira da; Cordeiro, Marta do Nascimento; Diniz, Danuza Montijo; Santa Cecília, Flávia Viana; Ferreira, Juliano; Gomez, Marcus Vinicius
    Background: Diabetic neuropathy is a common cause of painful diabetic neuropathy (PDN). C-X-C chemokine receptor type 4 (CXCR4) expression is increased in peripheral nerve samples from diabetes patients, suggesting a role for CXCR4 in PDN. Therefore, we evaluated the effects of Phα1β, ω-conotoxin MVIIA, and AMD3100 in a model of streptozotocin (STZ)-induced PDN in rodents and naïve model of rats with the activation of the CXCR4/stromal cell-derived factor 1 (SDF-1) signal. Methods: Diabetic neuropathy was induced by intraperitoneal (ip) injection of STZ in Wistar rats. Naïve rats were intrathecally injected with SDF-1 to test the CXCR4/SDF-1 signal. The effects of Phα1β intrathecal (it), ω-conotoxin MVIIA intrathecal (it), and AMD3100 intraperitoneal (ip) on rat hypersensitivity, IL-6, and the intracellular calcium [Ca2+]i content of diabetic synaptosomes were studied. Results: The drugs reduced the hypersensitivity in diabetic rats. SDF-1 (1.0 µg/it) administration in naïve rats induced hypersensitivity. Phα1β (100 pmol/it) or AMD3100 (2.5 µg/ip) reduced this hypersensitivity after 2 h treatments, while ω-conotoxin MVIIA did not have an effect. IL-6 and [Ca2+]i content increased in the spinal cord synaptosomes in diabetic rats. The drug treatments reduced IL-6 and the calcium influx in diabetic synaptosomes. Conclusions: Phα1β, ω-conotoxin MVIIA, and AMD3100, after 2 h of treatment of STZ-induced PDN, reduced hypersensitivity in diabetic rats. In naïve rats with CXCR4/SDF-1 activation, the induced hypersensitivity decreased after 2 h treatments with Phα1β or AMD-3100, while ω-conotoxin MVIIA did not affect. The inhibitory effects of Phα1β on PDN may involve voltage-dependent calcium channels.
  • Item
    Antiarrhythmogenic effects of a neurotoxin from the spider Phoneutria nigriventer.
    (2011) Almeida, Alvair Pinto de; Andrade, Alexandre Barbosa; Ferreira, Anderson José; Pires, Andrea Cristina Gomes; Damasceno, Dênis Derly; Alves, Márcia Netto Magalhães; Gomes, Enéas Ricardo de Morais; Kushmerick, Christopher; Lima, Ricardo de Freitas; Prado, Marco Antônio Maximo; Prado, Vânia Ferreira; Richardson, Michael; Cordeiro, Marta do Nascimento; Guatimosim, Silvia; Gomez, Marcus Vinicius
    In this study, we evaluated the effects of PhKv, a 4584 Da peptide isolated from the spider Phoneutria nigriventer venom, in the isolated rat heart and in isolated ventricular myocytes. Ventricular arrhythmias were induced by occlusion of the left anterior descending coronary artery for 15 min followed by 30 min of reperfusion. Administration of native PhKv (240 nM) 1 min before or after reperfusion markedly reduced the duration of arrhythmias. This effect was blocked by atropine, thereby indicating the participation of muscarinic receptors in the antiarrhythmogenic effect of PhKv. Notably, recombinant PhKv (240 nM) was also efficient to attenuate the arrhythmias (3.8 0.9 vs. 8.0 1.2 arbitrary units in control group). Furthermore, PhKv induced a significant reduction in heart rate. This bradycardia was partially blunted by atropine and potentiated by pyridostigmine. To further evaluate the participation of acetylcholine on the PhKv effects, we examined the release of this neurotransmitter from neuromuscular junctions. It was found that Phkv (200 nM) significantly increased the release of acetylcholine in this preparation. Moreover, PhKv (250 nM) did not cause any significant change in action potential or Ca2þ transient parameters in isolated cardiomyocytes. Altogether, these findings show an important acetylcholine-mediated antiarrhythmogenic effect of the spider PhKv toxin in isolated hearts.
  • Item
    Nitric oxide-induced vasorelaxation in response to PnTx2-6 toxin from Phoneutria nigriventer spider in rat cavernosal tissue.
    (2010) Nunes, Kenia Pedrosa; Cordeiro, Marta do Nascimento; Richardson, Michael; Borges, Marcia Helena; Diniz, Simone Odília Antunes Fernandes; Cardoso, Valbert Nascimento; Passaglia, Rita de Cassia Aleixo Tostes; Garcia, Maria Elena de Lima Perez; Webb, Robert Clinton; Leite, Romulo
    Introduction—Priapism is one of several symptoms observed in accidental bites by the spider Phoneutria nigriventer. The venom of this spider is comprised of many toxins, and the majority has been shown to affect excitable ion channels, mainly sodium (Na+) channels. It has been demonstrated that PnTx2-6, a peptide extracted from the venom of P. nigriventer, causes erection in anesthetized rats and mice. Aim—We investigated the mechanism by which PnTx2-6 evokes relaxation in rat corpus cavernosum. Main Outcome Measures—PnTx2-6 toxin potentiates nitric oxide (NO)-dependent cavernosal relaxation.
  • Item
    Increased cavernosal relaxation by Phoneutria nigriventer toxin, PnTx2-6, via activation at NO/cGMP signaling.
    (2011) Nunes, Kenia Pedrosa; Wynne, B. M.; Cordeiro, Marta do Nascimento; Borges, Marcia Helena; Richardson, Michael; Leite, Romulo; Garcia, Maria Elena de Lima Perez; Webb, Robert Clinton
    Erectile dysfunction mechanisms in diabetic patients are multifactorial and often lead to resistance to current therapy. Animal toxins have been used as pharmacological tools to study penile erection. Human accidents involving the venom of Phoneutria nigriventer spider are characterized by priapism. We hypothesize that PnTx2-6 potentiates cavernosal relaxation in diabetic mice by increasing cGMP. This effect is nNOS dependent. Cavernosal strips were contracted with phenylephrine (10−5 M) and relaxed by electrical field stimulation (EFS, 20V, 1–32 Hz) in the presence or absence of PnTx2-6 (10−8 M).Cavernosal strips from nNOS and eNOS knocaut (KO) mice, besides nNOS inhibitor (10−5M), were used to evaluate the role of this enzyme in the potentiation effect evoked by PnTx2-6. Tissue cGMP levels were determined after stimulation with PnTx2-6 in presence or absence of L-NAME (10−4M) and ω-conotoxin GVIA (10−6M), an N-type calcium channel inhibitor. Results showed PnTx2-6 enhanced cavernosal relaxation in diabetic mice (65%) and eNOS KO mice, but not in nNOS KO mice. The toxin effect in the cavernosal relaxation was abolished by nNOS inhibitor. cGMP levels are increased by PnTx2-6, however L-NAME abolished this enhancement as well as ω-conotoxin GVIA. We conclude PnTx2-6 facilitates penile relaxation in diabetic mice through a mechanism dependent on nNOS, probably via increasing NO/cGMP production.
  • Item
    Tx2-6 toxin of the Phoneutria nigriventer spider potentiates rat erectile function.
    (2008) Nunes, Kenia Pedrosa; Gonçalves, Andrey Christian da Costa; Lanza, Luciana Franco; Côrtes, Steyner de França; Cordeiro, Marta do Nascimento; Michael, Richardson; Pimenta, Adriano Monteiro de Castro; Webb, Robert Clinton; Garcia, Maria Elena de Lima Perez
    The venom of the spider Phoneutria nigriventer contains several toxins that have bioactivity in mammals and insects. Accidents involving humans are characterized by various symptoms including penile erection. Here we investigated the action of Tx2-6, a toxin purified from the P. nigriventer spider venom that causes priapism in rats and mice. Erectile function was evaluated through changes in intracavernosal pressure/mean arterial pressure ratio (ICP/MAP) during electrical stimulation of the major pelvic ganglion (MPG) of normotensive and deoxycorticosterone-acetate (DOCA)-salt hypertensive rats. Nitric oxide (NO) release was detected in cavernosum slices with fluorescent dye (DAF-FM) and confocal microscopy. The effect of Tx2-6 was also characterized after intracavernosal injection of a non-selective nitric oxide synthase (NOS) inhibitor, L-NAME. Subcutaneous or intravenous injection of Tx2-6 potentiated the elevation of ICP/MAP induced by ganglionic stimulation. L-NAME inhibited penile erection and treatment with Tx2-6 was unable to reverse this inhibition. Tx2-6 treatment induced a significant increase of NO release in cavernosum tissue. Attenuated erectile function of DOCA-salt hypertensive rats was fully restored after toxin injection. Tx2-6 enhanced erectile function in normotensive and DOCA-salt hypertensive rats, via the NO pathway. Our studies suggest that Tx2-6 could be important for development of new pharmacological agents for treatment of erectile dysfunction.