EM - Escola de Minas
URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/6
Notícias
A Escola de Minas de Ouro Preto foi fundada pelo cientista Claude Henri Gorceix e inaugurada em 12 de outubro de 1876.
Navegar
6 resultados
Resultados da Pesquisa
Item Design of sleeve connections with cross-bolted on circular hollow sections under axial tension.(2022) Amparo, Lucas Roquete; Oliveira, Matheus Miranda de; Sarmanho, Arlene Maria Cunha; Xavier, Ellen Martins; Alves, Vinicius NicchioThis present paper evaluates the behavior and resistance capacity of cross-bolted sleeve connections with circular hollow sections (CHS) under axial tension. This connection allows harmony in the continuity of the tubes. The cross-bolted sleeve connection with CHS comprises outer tubes connected by an inner tube and cross bolts at 90◦. Therefore, an experimental, numerical, and parametric study was conducted to identify the connection’s possible failure modes. The experimental tests were developed with cross bolts at 90◦, which enable the identification of fracture through the effective net area, bearing failure, and bolt bending. Finite element (FE) numerical models were developed and validated by Ansys software to provide a parametric study. Thus, such a parametric study was carried out using the verified FE models. The failure modes were evaluated considering the effects of geometric properties concerning their type and location; a relative slenderness limit for the design of connections was proposed, directing the occurrence of a failure in the outer tube. Normative prescriptions do not foresee the design of the sleeve. Therefore, new formulation methods for estimating the strength were proposed, allowing the design of these connections.Item New methodology to analyze the steel–concrete bond in CFST filled with lightweight and conventional concrete.(2021) Natalli, Juliana Fadini; Xavier, Ellen Martins; Costa, Laís Cristina Barbosa; Rodrigues, Bárbara Héllen; Sarmanho, Arlene Maria Cunha; Peixoto, Ricardo André FiorottiThe construction sector is constantly seek- ing for new building systems that are cheaper, faster and with a reduced generation of residues. In this way, the use of concrete-filled steel tubes (CFST) increased due to its fast and clean execution, and its high mechanical strength, durability and ductility. The performance of this system depends on the steel– concrete interaction that occurs in the form of a natural bond. The present work evaluates the natural bond mechanisms manifested in thin-walled steel tubes filled with three types of concrete: conventional, lightweight and lightweight with expansive admix- ture. Push-out tests were realized in the CFSTs and the results were compared with bond strength values prescribed by international standards. Finally, the residual concrete adhered to the CFST interface was evaluated by a new methodology using visual resources. Results indicated that the lower modulus of elasticity of the lightweight concretes contribute to the enhancement of the confinement effect and microlocking. And the expansive admixture improved the adhesion performance of the filling core. Addi- tionally, the new methodology presents a good correlation with the other tests and it is easy to apply.Item Experimental and numerical analysis of composite steel and concrete trusses.(2021) Martins, Joel Donizete; Pereira Junior, Sineval Esteves; Xavier, Ellen Martins; Neiva, Luiz Henrique de Almeida; Sarmanho, Arlene Maria CunhaIn the present work, two composite trusses formed by tubular shapes supporting a concrete slab were evaluated. Based on analytical formulation related to the problem, according to recommendations of standards, numerical analyses were performed, with models created using the software Ansys, and an experimental analysis with full-scale tests. Good agreement between the three analysis types was observed. A possible shear connection failure in one truss was observed. With a change in the second truss's connector length, an increase in the structure's strength and rigidity was achieved. In this study, because the shear connectors were directly welded on the upper chord wall, local effects with localized plastifications were evidenced.Item Study of bolts used as shear connectors in concrete-filled steel tubes.(2021) Chaves, Marina de Fátima Ferreira; Xavier, Ellen Martins; Sarmanho, Arlene Maria Cunha; Ribeiro Neto, Juliano GeraldoThis research presents a numerical analysis of bolts used as mechanical connectors in circular concrete-filled steel tube columns. The numerical model was calibrated with the experimental results and was analyzed different parameters such as bolt lengths, steel tube thickness, and concrete strength. The finite element model was developed in Abaqus software, using different constitutive models of concrete behavior. The results indicated that: (1) The thickness of the steel tube must be compatible with the diameter of the shear connector showing an ideal ratio between 1.3 and 2.0; (2) The length of the shear connector did not cause a significant change in the load capacity; (3) The minimum distance between the shear connectors of six times the diameter was enough to prevent overlap in their failure modes.Item Behavior and design formulation of steel CHS with sleeve connections.(2021) Amparo, Lucas Roquete; Oliveira, Matheus Miranda de; Sarmanho, Arlene Maria Cunha; Xavier, Ellen Martins; Alves, Vinicius NicchioStructures with tubular profiles gain space in civil construction due to their excellent response under tension, compression, and torsion. They are widely used in structural trusses, especially in large lengths. The profiles have a limited size due to the manufacturing and transport process. Therefore, there is a need to use some mechanism to perform the joint of profiles and obtain the desired length. This work aims to develop a new type of bar splice in circular hollow section (CHS) connection called sleeve connection, composed of two tubes connected with another smaller diameter tube with bolts arranged in a line (staggered bolts). This research presents an experimental, numerical, and parametric study of sleeve connection in CHS under centric axial tension. A numerical model was developed using the finite element method (FEM) considering sleeve connection with staggered bolts. From the numerical results, it was possible to analyze the connection behavior and failure modes: yielding gross cross-section, fracture through the effective net area, bolt shear failure, bearing failure of the plate, and bolt bending failure. This way, formulations were proposed to predict the sleeve connections' behavior with staggered bolts as a function of the failure modes.Item Experimental analysis of bolts employed as shear connectors in circular concrete-filled tube columns.(2019) Xavier, Ellen Martins; Ribeiro Neto, Juliano Geraldo; Sarmanho, Arlene Maria Cunha; Amparo, Lucas Roquete; Paula, Letícia Gualberto Caldeira deThis paper presents experimental and theoretical analysis of bolts employed as shear connectors in circular concrete-filled steel tube columns (CFTs). The theoretical results, obtained from ABNT NBR 16239:2013 formulations, were compared with the experimental results. A series of push-out tests were carried out, where the diameter and length of the bolts, the number of connectors and the concrete strength were varied. From the experimental results, it was observed that the equations from ABNT NBR 16239:2013 are conservative. Therefore, it is proposed an adjustment to the formulations in order to consider the concrete confinement. It was also verified that increments in the diameter and the length of the bolt increase the load capacity of the connector. However, the variation of the quantity of bolts and the concrete strength did not interfere in the load capacity.