Navegando por Autor "Carvalho, Tatiane Furtado de"
Agora exibindo 1 - 3 de 3
- Resultados por Página
- Opções de Ordenação
Item In vitro infectivity of strains isolated from dogs naturally infected with Leishmania infantum present a distinct pathogenic profile in hamsters.(2020) Resende, Lucilene Aparecida; Soares, Rodrigo Dian de Oliveira Aguiar; Moreira, Nádia das Dores; Ferreira, Sidney de Almeida; Lanna, Mariana Ferreira; Cardoso, Jamille Mirelle de Oliveira; Mathias, Fernando Augusto Siqueira; Vital, Wendel Coura; Mariano, Reysla Maria da Silveira; Leite, Jaqueline Costa; Silveira, Patricia; Carvalho, Tatiane Furtado de; Santos, Renato Lima; Lemos, Denise da Silveira; Martins Filho, Olindo Assis; Dutra, Walderez Ornelas; Reis, Alexandre Barbosa; Giunchetti, Rodolfo CordeiroVisceral leishmaniasis (VL) is a severe disease caused by Leishmania infantum. Dogs are the parasite’s main reservoir, favoring its transmission in the urban environment. The analysis of L. infantum from infected dogs contributes to the identification of more virulent parasites, thereby supporting basic and applied studies such as vaccinal and therapeutic strategies. We proposed the in vitro and in vivo characterization of L. infantum strains from naturally infected dogs from a VL endemic area based on an infectivity and pathogenicity analysis. DH82 canine macrophages were infected in vitro with different strains for infectivity analysis, showing distinct infectivity profiles. The strains that showed greater and lesser infectivity using in vitro analyses (616 and 614, respectively) were used to infect hamsters for pathogenicity analysis. The group infected with strain 616 showed 100% survival while the group infected with strain 614 showed 50% after seven months of follow up. Furthermore, the 614 strain induced more noticeable clinicopathological changes and biochemical abnormalities in liver function, along with high inflammation and parasite load in the liver and spleen. We confirmed high variability of infectivity and pathogenicity in L. infantum strains from infected dogs. The results support the belief that screening for L. infantum infectivity using in vitro experiments is inadequate when it comes to selecting the most pathogenic strain.Item Nanoformulations with Leishmania braziliensis antigens triggered controlled parasite burden in vaccinated golden hamster (Mesocricetus auratus) against visceral leishmaniasis.(2022) Ottino, Jennifer; Leite, Jaqueline Costa; Melo Júnior, Otoni Alves de Oliveira; Cabrera González, Marco Antonio; Carvalho, Tatiane Furtado de; Garcia, Giani Martins; Batista, Maurício Azevedo; Silveira, Patrícia; Cardoso, Mariana Santos; Bueno, Lilian Lacerda; Fujiwara, Ricardo Toshio; Santos, Renato Lima; Paes, Paulo Ricardo de Oliveira; Lemos, Denise da Silveira; Martins Filho, Olindo Assis; Galdino, Alexsandro Sobreira; Chávez Fumagalli, Miguel Angel; Dutra, Walderez Ornelas; Mosqueira, Vanessa Carla Furtado; Giunchetti, Rodolfo CordeiroLeishmaniasis is a widespread vector-borne disease in Brazil, with Leishmania (Leishmania) infantum as the primary etiological agent of visceral leishmaniasis (VL). Dogs are considered the main reservoir of this parasite, whose treatment in Brazil is restricted to the use of veterinary medicines, which do not promote a parasitological cure. Therefore, efficient vaccine development is the best approach to Canine Visceral Leishmaniasis (CVL) control. With this in mind, this study used hamsters (Mesocricetus auratus) as an experimental model in an anti-Leishmania preclinical vaccine trial to evaluate the safety, antigenicity, humoral response, and effects on tissue parasite load. Two novel formulations of nanoparticles made from poly(D, L-lactic) acid (PLA) polymer loading Leishmania braziliensis crude antigen (LB) exhibiting two different particle sizes were utilized: LBPSmG (570 nm) and LBPSmP (388 nm). The results showed that the nanoparticles were safe and harmless to hamsters and were antigenic with the induction in LBSap, LBPSmG, and LBPSmG groups of total anti-Leishmania IgG antibodies 30 days after challenge, which persists 200 days in LBSap and LBPSmP. At the same time, a less pronounced hepatosplenomegaly in LBSap, LBPSmG, and LBPSmP was found when compared to control groups, as well as a less pronounced inflammatory infiltrate and granuloma formation in the spleen. Furthermore, significant reductions of 84%, 81%, and 90% were observed in spleen parasite burden accessed by qPCR in the LBSap, LBPSmG, and LBPSmP groups, respectively. In this way, LBSap, LBPSmG, and LBPSmP formulations showed better results in vaccinated and L. infantum-challenged animals in further reducing parasitic load in the spleen and attenuating lesions in liver and splenic tissues. This results in safe, harmless nanoformulation vaccines with significant immunogenic and infection control potential. In addition, animals vaccinated with LBPSmP had an overall reduction in parasite burden in the spleen, indicating that a smaller nanoparticle could be more efficient in targeting antigen-presenting cells.Item Vaccination with formulation of nanoparticles loaded with Leishmania amazonensis antigens confers protection against experimental visceral leishmaniasis in hamster.(2023) Cabrera González, Marco Antonio; Gonçalves, Ana Alice Maia; Ottino, Jennifer; Leite, Jaqueline Costa; Resende, Lucilene Aparecida; Melo Júnior, Otoni Alves de Oliveira; Silveira, Patricia; Cardoso, Mariana Santos; Fujiwara, Ricardo Toshio; Bueno, Lilian Lacerda; Santos, Renato Lima; Carvalho, Tatiane Furtado de; Garcia, Giani Martins; Paes, Paulo Ricardo de Oliveira; Galdino, Alexsandro Sobreira; Chávez Fumagalli, Miguel Angel; Melo, Marilia Martins; Lemos, Denise da Silveira; Martins Filho, Olindo Assis; Dutra, Walderez Ornelas; Mosqueira, Vanessa Carla Furtado; Giunchetti, Rodolfo CordeiroVisceral leishmaniasis (VL) is a fatal disease caused by the protozoa Leishmania infantum for which dogs are the main reservoirs. A vaccine against canine visceral leishmaniasis (CVL) could be an important tool in the control of human and CVL by reducing the infection pressure of L. infantum. Despite the CVL vaccine available on the market, the Brazilian Ministry of Health did not implement the use of it in their control programs. In this sense, there is an urgent need to develop more efficient vaccines. In this study, the association between two polymeric nanoformulations, (poly (D, L-lactic) acid (PLA) polymer) loading Leishmania amazonensis antigens, was evaluated as a potential immunobiological agent against VL using golden hamsters as an experimental model. The results indicated that no significant adverse reactions were observed in animals vaccinated with LAPSmP. LAPSmP presented similar levels of total anti-Leishmania IgG as compared to LAPSmG. The LAPSmP and LAPSmG groups showed an intense reduction in liver and spleen parasitic load by qPCR. The LAPSmP and LAPSmG vaccines showed exceptional results, indicating that they may be promising candidates as a VL vaccine.