Brochero Martinez, Fabio EnriqueRibas, Sávio2023-08-182023-08-182022BOCHERO MARTINEZ, F. E.; RIBAS, S. Extremal product-one free sequences over Cn s C2. Discrete Mathematics, v. 345, 2022. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0012365X22002680>. Acesso em: 06 jul. 2023.0012-365Xhttp://www.repositorio.ufop.br/jspui/handle/123456789/17269Let G be a finite group multiplicatively written. The small Davenport constant of G is the maximum positive integer d(G) such that there exists a product-one free sequence S of length d(G). Let s2 ≡ 1 (mod n), where s ≡ ±1 (mod n). It has been proven that d(Cn s C2) = n (see [13, Lemma 6]). In this paper, we determine all sequences over Cn s C2 of length n which are product-one free. It completes the classification of all product-one free sequences over every group of the form Cn s C2, including the quasidihedral groups and the modular maximal-cyclic groups.en-USrestritoZero-sum problemSmall davenport constantInverse zero-sum problemSemidirect productExtremal product-one free sequences over Cn s C2.Artigo publicado em periodicohttps://www.sciencedirect.com/science/article/pii/S0012365X22002680https://doi.org/10.1016/j.disc.2022.113062