Embedded edge artifcial intelligence for longitudinal rip detection in conveyor belt applied at the industrial mining environment.
Data
2022
Título da Revista
ISSN da Revista
Título de Volume
Editor
Resumo
The use of deep learning on edge AI to detect failures in conveyor belts solves a complex problem of iron ore benefciation
plants. Losses in the order of thousands of dollars are caused by failures in these assets. The existing fault detection systems
currently do not have the necessary efciency and complete loss of belts is common. Correct fault detection is necessary to
reduce fnancial losses and unnecessary risk exposure by maintenance personnel. This problem is addressed by the present
work with the training of a deep learning model for detecting images of failures of the conveyor belt. The resulted model is
converted and executed in an edge device located near the conveyor belt to stop it in case a failure is detected. A prototype
built and tested in the feld obtained satisfactory results and is shown as the feasibility of using deep learning and edge arti-
fcial intelligence in industrial mining environments.
Descrição
Palavras-chave
Deep neural network, Device edge
Citação
KLIPPEL, E. et al. Embedded edge artifcial intelligence for longitudinal rip detection in conveyor belt applied at the industrial mining environment. SN Computer Science, v. 3, n. 280, 2022. Disponível em: <https://link.springer.com/article/10.1007/s42979-022-01169-y>. Acesso em: 06 jul. 2023.