Aprendizado de máquina aplicado à construção civil : estimativa da resistência à compressão de concretos de escória de aciaria.
dc.contributor.advisor | Mendes, Júlia Castro | pt_BR |
dc.contributor.advisor | Cury, Alexandre Abrahão | pt_BR |
dc.contributor.author | Penido, Rúben El-Katib | |
dc.contributor.referee | Mendes, Júlia Castro | pt_BR |
dc.contributor.referee | Cury, Alexandre Abrahão | pt_BR |
dc.contributor.referee | Carvalho, José Maria Franco de | pt_BR |
dc.contributor.referee | Santos, Tatiana Barreto dos | pt_BR |
dc.date.accessioned | 2022-05-10T19:58:48Z | |
dc.date.available | 2022-05-10T19:58:48Z | |
dc.date.issued | 2022 | pt_BR |
dc.description | Programa de Pós-Graduação em Engenharia Civil. Departamento de Engenharia Civil, Escola de Minas, Universidade Federal de Ouro Preto. | pt_BR |
dc.description.abstract | Nos últimos anos, estudos vêm sendo conduzidos visando disseminar a reutilização de escória de aciaria como agregado para concretos. Entretanto, a ausência de metodologias para obtenção de traços de concretos de escória de aciaria tem dificultado as pesquisas e comprometido o seu uso em larga escala. Além disso, as metodologias convencionalmente adotadas para a definição de traços de concreto envolvem tabelas empíricas e a necessidade de se moldar e romper corpos de prova, demandando tempo e recursos. Neste contexto, o presente trabalho teve como objetivo desenvolver modelos baseados em aprendizado de máquinas para a previsão da resistência à compressão de concretos de escória de aciaria a partir de seus traços. Para este fim, foi realizado um levantamento de dados de concretos de escória de aciaria na literatura e aplicadas quatro técnicas de aprendizagem de máquina: regressão por vetores suporte (SVR), redes neurais artificiais (ANN), árvore de decisão com algoritmo de boosting (XGBoost) e processo gaussiano de regressão (GPR). Os resultados foram avaliados por meio de três indicadores: erro absoluto médio (MAE), erro quadrático médio (RMSE) e coeficiente de determinação (R²). Numa primeira etapa, os modelos com o banco de dados elaborado foram validados de forma cruzada (k = 10). Em seguida, foram utilizados dados experimentais para validar os modelos construídos. Na primeira etapa, o modelo que alcançou o melhor desempenho foi o ANN, com R² de 0,79, com os demais variando entre 0,68 e 0,73. Os MAEs variaram entre 4,73 e 5,51 MPa. No entanto, a validação experimental obteve resultados insatisfatórios - os modelos de GPR, XGBoost e SVR apresentaram valores de R² negativos. Isso mostra que o tamanho do banco de dados e a variabilidade do resíduo estudado influenciam significativamente a qualidade dos modelos propostos. Desse modo, o presente trabalho traz os primeiros passos para o desenvolvimento de estratégias de desenvolvimento de traços para concretos não-convencionais. Em última análise, buscamos reduzir o impacto das indústrias siderúrgicas no meio ambiente e contribuir para o entendimento dos fatores que influenciam os traços de concreto. | pt_BR |
dc.identifier.citation | PENIDO, Rúben El-Katib. Aprendizado de máquina aplicado à construção civil: estimativa da resistência à compressão de concretos de escória de aciaria. 2022. 120 f. Dissertação (Mestrado em Engenharia Civil) - Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, 2022. | pt_BR |
dc.identifier.uri | http://www.repositorio.ufop.br/jspui/handle/123456789/14895 | |
dc.language.iso | pt_BR | pt_BR |
dc.rights | aberto | pt_BR |
dc.rights.license | Autorização concedida ao Repositório Institucional da UFOP pelo(a) autor(a) em 03/05/2022 com as seguintes condições: disponível sob Licença Creative Commons 4.0 que permite copiar, distribuir e transmitir o trabalho, desde que sejam citados o autor e o licenciante. Não permite o uso para fins comerciais nem a adaptação. | pt_BR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Escória - metalurgia | pt_BR |
dc.subject | Escória de aciaria | pt_BR |
dc.subject | Concreto - resistência à compressão | pt_BR |
dc.subject | Aprendizado do computador | pt_BR |
dc.title | Aprendizado de máquina aplicado à construção civil : estimativa da resistência à compressão de concretos de escória de aciaria. | pt_BR |
dc.type | Dissertacao | pt_BR |
Arquivos
Pacote original
1 - 1 de 1
Nenhuma Miniatura Disponível
- Nome:
- DISSERTAÇÃO_ApredizadoMáquinaAplicado.pdf
- Tamanho:
- 2.89 MB
- Formato:
- Adobe Portable Document Format
- Descrição:
Licença do pacote
1 - 1 de 1
Nenhuma Miniatura Disponível
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: