A GPU deep learning metaheuristic based model for time series forecasting.

dc.contributor.authorCoelho, Igor Machado
dc.contributor.authorCoelho, Vitor Nazário
dc.contributor.authorLuz, Eduardo José da Silva
dc.contributor.authorOchi, Luiz Satoru
dc.contributor.authorGuimarães, Frederico Gadelha
dc.contributor.authorRios, Eyder
dc.date.accessioned2018-01-24T15:24:43Z
dc.date.available2018-01-24T15:24:43Z
dc.date.issued2017
dc.description.abstractAs the new generation of smart sensors is evolving towards high sampling acquisitions systems, the amount of information to be handled by learning algorithms has been increasing. The Graphics Processing Unit (GPU) architecture provides a greener alternative with low energy consumption for mining big data, bringing the power of thousands of processing cores into a single chip, thus opening a wide range of possible applications. In this paper (a substantial extension of the short version presented at REM2016 on April 19–21, Maldives [1]), we design a novel parallel strategy for time series learning, in which different parts of the time series are evaluated by different threads. The proposed strategy is inserted inside the core a hybrid metaheuristic model, applied for learning patterns from an important mini/microgrid forecasting problem, the household electricity demand forecasting. The future smart cities will surely rely on distributed energy generation, in which citizens should be aware about how to manage and control their own resources. In this sense, energy disaggregation research will be part of several typical and useful microgrid applications. Computational results show that the proposed GPU learning strategy is scalable as the number of training rounds increases, emerging as a promising deep learning tool to be embedded into smart sensors.pt_BR
dc.identifier.citationCOELHO, I. M. et al. A GPU deep learning metaheuristic based model for time series forecasting.  Applied Energy, v. 1, p. 412–418, 2017. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0306261917300041>. Acesso em: 16 jan. 2018.pt_BR
dc.identifier.doihttps://doi.org/10.1016/j.apenergy.2017.01.003
dc.identifier.issn0306-2619
dc.identifier.urihttp://www.repositorio.ufop.br/handle/123456789/9332
dc.identifier.uri2https://www.sciencedirect.com/science/article/pii/S0306261917300041pt_BR
dc.language.isoen_USpt_BR
dc.rightsrestritopt_BR
dc.subjectDeep learning unitpt_BR
dc.subjectGraphics processingpt_BR
dc.subjectHybrid forecasting modelpt_BR
dc.subjectSmart sensorspt_BR
dc.titleA GPU deep learning metaheuristic based model for time series forecasting.pt_BR
dc.typeArtigo publicado em periodicopt_BR

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
ARTIGO_GPUDeepLearning.pdf
Tamanho:
1.08 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
license.txt
Tamanho:
924 B
Formato:
Item-specific license agreed upon to submission
Descrição: