Confiabilidade estrutural utilizando o método de Monte Carlo e redes neurais.
dc.contributor.author | Barbosa, Anderson Henrique | |
dc.contributor.author | Freitas, Marcílio Sousa da Rocha | |
dc.contributor.author | Neves, Francisco de Assis das | |
dc.date.accessioned | 2013-01-28T16:17:14Z | |
dc.date.available | 2013-01-28T16:17:14Z | |
dc.date.issued | 2005 | |
dc.description.abstract | A análise de confiabilidade estrutural em geral, por envolver um grande número de variáveis aleatórias ou exigir uma grande quantidade de simulações, se depara com a questão do custo computacional. Duas técnicas utilizadas para essa avaliação são o método de simulação de Monte Carlo e os métodos analíticos do tipo FORM/SORM. Os métodos analíticos FORM e SORM podem apresentar problema de precisão no cálculo da probabilidade de falha. Em relação ao método de Monte Carlo, embora sejam de fácil implementação e absolutamente geral, o grande número de simulações pode exigir um tempo de processamento elevado, o que pode tornar sua aplicação inviável. Nesse trabalho, foi utilizada uma rede neural treinada para substituir a solução do problema estrutural necessário a cada simulação de Monte Carlo, com o objetivo de reduzir o custo computacional requerido na análise. As aplicações realizadas proporcionaram bons resultados, com baixo custo computacional, o que atesta a viabilidade de sua aplicação. | pt_BR |
dc.description.abstracten | Structural reliability analysis due to the great number of random variables or large number of simulations needed may result in a high computational cost. Two techniques largely used for structural reliability assess are Monte Carlo Simulation and the analytic methods FORM/SORM. These may present some inaccuracy in the assessment of the probability of failure. The Monte Carlo Method is easy to implement and absolutely general, but the great number of required simulations may result in high computational cost making the application impracticable. This work used a trained neural network to substitute the structural analysis needed for each Monte Carlo Simulation, in order to reduce the computational cost. The applications produced good results with low computational cost, certifying its application viability. | |
dc.identifier.citation | BARBOSA, A. H.; FREITAS, M. S. da R.; NEVES, F. de A. das. Confiabilidade estrutural utilizando o método de Monte Carlo e redes neurais. REM: Revista Escola de Minas, v. 58, n. 3, p. 247-255, jul./set. 2005. Disponível em: <http://www.scielo.br/pdf/rem/v58n3/v58n3a11.pdf>. Acesso em: 28 jan. 2013. | pt_BR |
dc.identifier.issn | 03704467 | |
dc.identifier.uri | http://www.repositorio.ufop.br/handle/123456789/2072 | |
dc.language.iso | pt_BR | pt_BR |
dc.rights.license | A REM - Revista Escola de Minas - autoriza o depósito de cópia de artigos dos professores e alunos da UFOP no Repositório Institucional da UFOP. Licença concedida mediante preenchimento de formulário online em: 12 set. 2013. | |
dc.subject | Confiabilidade estrutural | pt_BR |
dc.subject | Redes neurais | pt_BR |
dc.subject | Método de Monte Carlo | pt_BR |
dc.subject | Monte Carlo method | pt_BR |
dc.subject | Neural networks | pt_BR |
dc.title | Confiabilidade estrutural utilizando o método de Monte Carlo e redes neurais. | pt_BR |
dc.type | Artigo publicado em periodico | pt_BR |
Arquivos
Pacote original
1 - 1 de 1
Nenhuma Miniatura Disponível
- Nome:
- ARTIGO_ConfiabilidadeEstruturalUtilizando.pdf
- Tamanho:
- 331.32 KB
- Formato:
- Adobe Portable Document Format
Licença do pacote
1 - 1 de 1
Nenhuma Miniatura Disponível
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: