Equisetum hyemale‑derived unprecedented bioactive composite for hard and soft tissues engineering.

Resumo

Although Bioactive Glasses (BGs) have been progressively optimized, their preparation often still involves the use of toxic reagents and high calcination temperatures to remove organic solvents. In the present work, these synthesis related drawbacks were overcome by treating the ashes from the Equisetum hyemale plant in an ethanol/water solution to develop a bioactive composite [glass/ carbon (BG-Carb)]. The BG-Carb was characterized by scanning electron microscopy, and transmission electron microscopy; and its chemical composition was assessed by inductively coupled plasmaoptical emission spectroscopy. Brunauer–Emmett–Teller gas adsorption analysis showed a specifc surface area of 121 m2 ­g−1. The formation of hydroxyapatite (HA) surface layer in vitro was confrmed by Fourier-transform infrared spectroscopy analysis before and after immersion in simulated body fuid (SBF) solution. The Rietveld refnement of the XRD patterns and selected area electron difraction analyses confrmed HA in the sample even before immersing it in SBF solution. However, stronger evidences of the presence of HA were observed after immersion in SBF solution due to the surface mineralization. The BG-Carb samples showed no cytotoxicity on MC3T3-E1 cells and osteodiferentiation capacity similar to the positive control. Altogether, the BG-Carb material data reveals a promising plant waste-based candidate for hard and soft tissue engineering.

Descrição

Palavras-chave

Citação

SILVA, R. M. F. da C. e et al. Equisetum hyemale‑derived unprecedented bioactive composite for hard and soft tissues engineering. Scientific Reports, v. 12, artigo 13425, 2022. Disponível em: <https://www.nature.com/articles/s41598-022-17626-w>. Acesso em: 15 mar. 2023.

Avaliação

Revisão

Suplementado Por

Referenciado Por