On holomorphic distributions on fano threefolds.

dc.contributor.authorFelippe, Alana Cavalcante
dc.contributor.authorCorrêa, Maurício
dc.contributor.authorMarchesi, Simone
dc.date.accessioned2022-02-21T16:27:35Z
dc.date.available2022-02-21T16:27:35Z
dc.date.issued2018pt_BR
dc.description.abstractThis paper is devoted to the study of holomorphic distributions of dimension and codimension one on smooth weighted projective complete intersection Fano manifolds threedimensional, with Picard number equal to one. We study the relations between algebro-geometric properties of the singular set of singular holomorphic distributions and their associated sheaves. We characterize either distributions whose tangent sheaf or conormal sheaf are arithmetically Cohen Macaulay (aCM) on smooth weighted projective complete intersection Fano manifolds threefold. We also prove that a codimension one locally free distribution with trivial canonical bundle on any Fano threefold, with Picard number equal to one, has a tangent sheaf which either splits or it is stable.pt_BR
dc.identifier.citationFELIPPE, A. C.; CORRÊA, M.; MARCHESI, S. On holomorphic distributions on fano threefolds. Journal of Pure and Applied Algebra, v. 224, artigo 106272, dez. 2018. Disponível em: <https://www.sciencedirect.com/science/article/abs/pii/S0022404919302853?via%3Dihub>. Acesso em: 12 set. 2021.pt_BR
dc.identifier.doihttps://doi.org/10.1016/j.jpaa.2019.106272pt_BR
dc.identifier.issn0022-4049
dc.identifier.urihttp://www.repositorio.ufop.br/jspui/handle/123456789/14533
dc.identifier.uri2https://www.sciencedirect.com/science/article/abs/pii/S0022404919302853?via%3Dihubpt_BR
dc.language.isoen_USpt_BR
dc.rightsrestritopt_BR
dc.titleOn holomorphic distributions on fano threefolds.pt_BR
dc.typeArtigo publicado em periodicopt_BR

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
ARTIGO_HolomorphicDistributionFano.pdf
Tamanho:
300.14 KB
Formato:
Adobe Portable Document Format
Descrição:

Licença do pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: