Self-supervised learning for arrhythmia classification.
Nenhuma Miniatura Disponível
Data
2023
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Resumo
Arrhythmias, heart diseases that are commonly diagnosed through electrocar-
diograms (ECG), require computational methods for detection and classification
to improve the physician’s diagnosis. Although there is abundant literature on the
subject, the high intra-patient variability and noise of ECG signals pose challenges
in developing practical machine-learning models. To address this, we propose a cus-
tomized adjustment of machine learning models through self-supervised learning with
human-in-the-loop. Our approach introduces a pretext task called ECGWavePuzzle,
which improves classification performance through better generalization. Evaluation
metrics on the MIT-BIH database demonstrate the effectiveness of our approach,
which improved the ECGnet global accuracy by over 10% and the Mousavi’s CNN
by over 13%. Additionally, the experimental results demonstrated that the proposed
approach improved the sensitivity and positive predictive value of the arrhythmic
classes for certain patients.
Descrição
Programa de Pós-Graduação em Ciência da Computação. Departamento de Ciência da Computação, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto.
Palavras-chave
Deep learning, Arrhythmia detection, Self supervised learning, Electrocardiogram - ECG
Citação
SILVA, Guilherme Augusto Lopes. Self-supervised learning for arrhythmia classification. 2023. 71 f. Dissertação (Mestrado em Ciência da Computação) - Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, 2023.
Coleções
Avaliação
Revisão
Suplementado Por
Referenciado Por
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como aberto