Robust automated cardiac arrhythmia detection in ECG beat signals.

dc.contributor.authorAlbuquerque, Victor Hugo Costa de
dc.contributor.authorNunes, Thiago Monteiro
dc.contributor.authorPereira, Danillo Roberto
dc.contributor.authorLuz, Eduardo José da Silva
dc.contributor.authorGomes, David Menotti
dc.contributor.authorPapa, João Paulo
dc.contributor.authorTavares, João Manuel R. S.
dc.date.accessioned2018-01-24T15:27:23Z
dc.date.available2018-01-24T15:27:23Z
dc.date.issued2016
dc.description.abstractNowadays, millions of people are affected by heart diseases worldwide, whereas a considerable amount of them could be aided through an electrocardiogram (ECG) trace analysis, which involves the study of arrhythmia impacts on electrocardiogram patterns. In this work, we carried out the task of automatic arrhythmia detection in ECG patterns by means of supervised machine learning techniques, being the main contribution of this paper to introduce the optimum-path forest (OPF) classifier to this context. We compared six distance metrics, six feature extraction algorithms and three classifiers in two variations of the same dataset, being the performance of the techniques compared in terms of effectiveness and efficiency. Although OPF revealed a higher skill on generalizing data, the support vector machines (SVM)-based classifier presented the highest accuracy. However, OPF shown to be more efficient than SVM in terms of the computational time for both training and test phases.pt_BR
dc.identifier.citationALBUQUERQUE, V. H. C. de et al. Robust automated cardiac arrhythmia detection in ECG beat signals. Neural Computing & Applications , v. 1, p. 1-15, 2016. Disponível em: <https://link.springer.com/article/10.1007/s00521-016-2472-8>. Acesso em: 16 jan. 2018.pt_BR
dc.identifier.doihttps://doi.org/10.1007/s00521-016-2472-8
dc.identifier.issn1433-3058
dc.identifier.urihttp://www.repositorio.ufop.br/handle/123456789/9333
dc.identifier.uri2https://link.springer.com/article/10.1007/s00521-016-2472-8pt_BR
dc.language.isoen_USpt_BR
dc.rightsrestritopt_BR
dc.subjectElectrophysiological signalspt_BR
dc.subjectCardiac dysrhythmia classificationpt_BR
dc.subjectFeature extractionpt_BR
dc.subjectPattern recognitionpt_BR
dc.titleRobust automated cardiac arrhythmia detection in ECG beat signals.pt_BR
dc.typeArtigo publicado em periodicopt_BR

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
ARTIGO_RobustAutomatedCardiac.pdf
Tamanho:
750.02 KB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
license.txt
Tamanho:
924 B
Formato:
Item-specific license agreed upon to submission
Descrição: