Robust automated cardiac arrhythmia detection in ECG beat signals.
dc.contributor.author | Albuquerque, Victor Hugo Costa de | |
dc.contributor.author | Nunes, Thiago Monteiro | |
dc.contributor.author | Pereira, Danillo Roberto | |
dc.contributor.author | Luz, Eduardo José da Silva | |
dc.contributor.author | Gomes, David Menotti | |
dc.contributor.author | Papa, João Paulo | |
dc.contributor.author | Tavares, João Manuel R. S. | |
dc.date.accessioned | 2018-01-24T15:27:23Z | |
dc.date.available | 2018-01-24T15:27:23Z | |
dc.date.issued | 2016 | |
dc.description.abstract | Nowadays, millions of people are affected by heart diseases worldwide, whereas a considerable amount of them could be aided through an electrocardiogram (ECG) trace analysis, which involves the study of arrhythmia impacts on electrocardiogram patterns. In this work, we carried out the task of automatic arrhythmia detection in ECG patterns by means of supervised machine learning techniques, being the main contribution of this paper to introduce the optimum-path forest (OPF) classifier to this context. We compared six distance metrics, six feature extraction algorithms and three classifiers in two variations of the same dataset, being the performance of the techniques compared in terms of effectiveness and efficiency. Although OPF revealed a higher skill on generalizing data, the support vector machines (SVM)-based classifier presented the highest accuracy. However, OPF shown to be more efficient than SVM in terms of the computational time for both training and test phases. | pt_BR |
dc.identifier.citation | ALBUQUERQUE, V. H. C. de et al. Robust automated cardiac arrhythmia detection in ECG beat signals. Neural Computing & Applications , v. 1, p. 1-15, 2016. Disponível em: <https://link.springer.com/article/10.1007/s00521-016-2472-8>. Acesso em: 16 jan. 2018. | pt_BR |
dc.identifier.doi | https://doi.org/10.1007/s00521-016-2472-8 | |
dc.identifier.issn | 1433-3058 | |
dc.identifier.uri | http://www.repositorio.ufop.br/handle/123456789/9333 | |
dc.identifier.uri2 | https://link.springer.com/article/10.1007/s00521-016-2472-8 | pt_BR |
dc.language.iso | en_US | pt_BR |
dc.rights | restrito | pt_BR |
dc.subject | Electrophysiological signals | pt_BR |
dc.subject | Cardiac dysrhythmia classification | pt_BR |
dc.subject | Feature extraction | pt_BR |
dc.subject | Pattern recognition | pt_BR |
dc.title | Robust automated cardiac arrhythmia detection in ECG beat signals. | pt_BR |
dc.type | Artigo publicado em periodico | pt_BR |
Arquivos
Pacote original
1 - 1 de 1
Nenhuma Miniatura Disponível
- Nome:
- ARTIGO_RobustAutomatedCardiac.pdf
- Tamanho:
- 750.02 KB
- Formato:
- Adobe Portable Document Format
Licença do pacote
1 - 1 de 1
Nenhuma Miniatura Disponível
- Nome:
- license.txt
- Tamanho:
- 924 B
- Formato:
- Item-specific license agreed upon to submission
- Descrição: