Mechanisms of arsenic removal from simulated surface water based on As (III) retention on thiol chelating resins.

Nenhuma Miniatura Disponível

Data

2021

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

A novel system for arsenic speciation in the aqueous environment has been developed based on the high affinity of As(III) for the sulfhydryl groups present in thiol resins (R-S). The performance of tailor-made cartridges filled with the thiol resin was then compared with a commercial silica-based anion exchange cartridge with a qua- ternary ammonium group (R-N) typically used for As(V) speciation. Both were able to separate arsenic species efficiently, As(V) and As(III), within a broad pH range using flow rates of up to 5 ml min− 1 . The R-S resin was shown to be suitable for the inorganic arsenic speciation in aqueous systems containing calcium, magnesium, ferrous and ferric ions. The R-S selectivity for As(III) was affected only at sulfate or phosphate/As mass ratio > 500, in a behavior similar to R-N for As(V). The thiol resin’s selectivity for As(III) and its immobilization mechanism were investigated through X-ray Absorption Spectroscopy. At pH 5, each arsenic atom bounds to three sulfur atoms, with an As-S inter-atomic distance of 2.26 ± 0.01 Å, and a coordination number (CN) of 2.8 ± 0.3. The separation of the neutral As(III) species by a thiol resin presents itself as an alternative to the available anion exchange methods. The sorption of As(III) on the thiol resin followed a pseudo-second-order kinetic model and can be described by the Langmuir isotherm.

Descrição

Palavras-chave

Arsenic speciation, Adsorption mechanism, Ion exchange, Sulfhydryl, X-ray absorption spectroscopy

Citação

DUARTE, G. et al. Mechanisms of arsenic removal from simulated surface water based on As (III) retention on thiol chelating resins. Environmental Nanotechnology, Monitoring & Management, v. 16, 2021. Disponível em: <https://www.sciencedirect.com/science/article/pii/S2215153221001070>. Acesso em: 11 out. 2022.

Avaliação

Revisão

Suplementado Por

Referenciado Por