Penalized likelihood and multi-objective spatial scans for the detection and inference of irregular clusters.

dc.contributor.authorCançado, André Luiz Fernandes
dc.contributor.authorDuarte, Anderson Ribeiro
dc.contributor.authorDuczmal, Luiz Henrique
dc.contributor.authorFerreira, Sabino José
dc.contributor.authorFonseca, Carlos M.
dc.contributor.authorGontijo, Eliane Dias
dc.date.accessioned2012-10-24T17:50:09Z
dc.date.available2012-10-24T17:50:09Z
dc.date.issued2010
dc.description.abstractBackground: Irregularly shape d spatial clusters are difficult to delineate. A cluster found by an algorithm often spreads through large portions of the map, impacting its geographical meaning. Penalized likelihood methods for Kulldorff’ s spatial scan statistics have been used to control the excessive freedom of the shape of clusters . Penalty functions based on cluster geometry and non-connectivity have been proposed recently. Another approach involves the use of a multi objective algorithm to maximize two objectives: the spatial scan statistics and the geometric penalty function. Results & Discussion: We present a novel scan statistic algorithm employing a function based on the graph topology to penalize the presence of under -populated disconnection nodes in candid ate clusters , the disconnection nodes cohesion function. A disconnection node is defined as a region within a cluster, such that its removal disconnects the cluster. By applying this function , the most geographicall y meaning ful clusters are sifted through the immense set of possible irregularly shaped candidate cluster solutions. To evaluate the statistical significance of solutions for multi-objective scans, a statistical approach based on the concept of attainment function is use d. In this pa per we compared different penalized likelihoods employing the geometric and non-connectivity regularity functions and the novel disconnection nodes cohesion function . We also build multi-objective scans using those three functions and compare them with the previous penalized likelihood scans. An application is presented using comprehensive state-wide data for Chagas’ disease in puerperal women in Minas Gerais state, Brazil. Conclusions : We show that, compared to the other single-objective algorithm s, multi- objective scans present better performance, regarding power, sensitivity and positive predicted value. The multi objective non-connectivity scan is faster and better suited for the detect ion of moderately irregularly shaped clusters. The multi-objective cohesion scan is most effective for the detection of highly irregularly shaped clusters .pt_BR
dc.identifier.citationCANÇADO, A. L. F. et al. Penalized likelihood and multi-objective spatial scans for the detection and inference of irregular clusters. International Journal of Health Geographics, v.9, n. 55, p. 1-17, 2010. Disponível em: http://www.ij-healthgeographics.com/content/pdf/1476-072X-9-55.pdf. Acesso em: 24/10/2012pt_BR
dc.identifier.issn1476072X
dc.identifier.urihttp://www.repositorio.ufop.br/handle/123456789/1738
dc.language.isoen_USpt_BR
dc.rights.licenseAutores de artigos publicados no International Journal of Health Geographics são os detentores do copyright de seus artigos e concederam a qualquer terceiro o direito de usar, repoduzir ou disseminar o artigo. Fonte: International Journal of Health Geographics <http://www.ij-healthgeographics.com/about> Acesso em 01 Dez. 2013.
dc.titlePenalized likelihood and multi-objective spatial scans for the detection and inference of irregular clusters.pt_BR
dc.typeArtigo publicado em periodicopt_BR

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Imagem de Miniatura
Nome:
ARTIGO_PenalizedLikelihoodObjective.pdf
Tamanho:
1.44 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: