Proteomics-based identification of differentially abundant proteins reveals adaptation mechanisms of Xanthomonas citri subsp. citri during Citrus sinensis infection.
Data
2017
Título da Revista
ISSN da Revista
Título de Volume
Editor
Resumo
Background: Xanthomonas citri subsp. citri (Xac) is the causal agent of citrus canker. A proteomic analysis under in
planta infectious and non-infectious conditions was conducted in order to increase our knowledge about the
adaptive process of Xac during infection.
Results: For that, a 2D–based proteomic analysis of Xac at 1, 3 and 5 days after inoculation, in comparison to Xac
growth in NB media was carried out and followed by MALDI-TOF-TOF identification of 124 unique differentially
abundant proteins. Among them, 79 correspond to up-regulated proteins in at least one of the three stages of
infection. Our results indicate an important role of proteins related to biofilm synthesis, lipopolysaccharides biosynthesis,
and iron uptake and metabolism as possible modulators of plant innate immunity, and revealed an intricate
network of proteins involved in reactive oxygen species adaptation during Plants` Oxidative Burst response. We
also identified proteins previously unknown to be involved in Xac-Citrus interaction, including the hypothetical
protein XAC3981. A mutant strain for this gene has proved to be non-pathogenic in respect to classical symptoms of
citrus canker induced in compatible plants.
Conclusions: This is the first time that a protein repertoire is shown to be active and working in an integrated manner
during the infection process in a compatible host, pointing to an elaborate mechanism for adaptation of Xac once
inside the plant.
Descrição
Palavras-chave
Plants’Oxidative burst, Biofilm, Iron uptake and metabolism, LPS modulation
Citação
MOREIRA, L. M. et al. Proteomics-based identification of differentially abundant proteins reveals adaptation mechanisms of Xanthomonas citri subsp. citri during Citrus sinensis infection. BMC Microbiology, v. 17, n. 155, p. 1-12, jul. 2017. Disponível em: <https://bmcmicrobiol.biomedcentral.com/articles/10.1186/s12866-017-1063-x>. Acesso em: 22 fev. 2019.