On a singular minimizing problem.

dc.contributor.authorErcole, Grey
dc.contributor.authorPereira, Gilberto de Assis
dc.date.accessioned2023-02-07T18:32:43Z
dc.date.available2023-02-07T18:32:43Z
dc.date.issued2018pt_BR
dc.description.abstractFor each q ∈ (0, 1) let λq(Ω) := inf k∇vk p Lp(Ω) : v ∈ W1,p 0 (Ω) and Z Ω |v| q dx = 1, where p > 1 and Ω is a bounded and smooth domain of R N , N ≥ 2. We first show that 0 < μ(Ω) := lim q→0+λq(Ω)|Ω| p q < ∞, where |Ω| = R Ω dx. Then, we prove that μ(Ω) = min (k∇vk p Lp(Ω) : v ∈ W1,p 0 (Ω) and lim q→0+ 1 |Ω| Z Ω |v| q dx 1 q = 1) and that μ(Ω) is reached by a function u ∈ W1,p 0 (Ω), which is positive in Ω, belongs to C 0,α(Ω), for some α ∈ (0, 1), and satisfies − div(|∇u| p−2 ∇u) = μ(Ω)|Ω| −1 u −1 in Ω, and Z Ω log udx = 0. We also show that μ(Ω)−1 is the best constant C in the following log-Sobolev type inequality exp 1 |Ω| Z Ω log |v| p dx ≤ C k∇vk p Lp(Ω) , v ∈ W1,p 0 (Ω) and that this inequality becomes an equality if, and only if, v is a scalar multiple of u and C = μ(Ω)−1.pt_BR
dc.identifier.citationERCOLE, G.; PEREIRA, G. de A. On a singular minimizing problem. Journal D Analyse Mathematique, v. 135, p. 575-598, 2018. Disponível em: <https://link.springer.com/article/10.1007/s11854-018-0040-0>. Acesso em: 06 jul. 2022.pt_BR
dc.identifier.doihttps://doi.org/10.1016/j.jmaa.2022.126225pt_BR
dc.identifier.issn1565-8538
dc.identifier.urihttp://www.repositorio.ufop.br/jspui/handle/123456789/16136
dc.identifier.uri2https://link.springer.com/article/10.1007/s11854-018-0040-0pt_BR
dc.language.isoen_USpt_BR
dc.rightsrestritopt_BR
dc.subjectAsymptotic behaviorpt_BR
dc.subjectlog-Sobolev inequalitypt_BR
dc.subjectp-Laplacianpt_BR
dc.subjectSingular problempt_BR
dc.titleOn a singular minimizing problem.pt_BR
dc.typeArtigo publicado em periodicopt_BR

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
ARTIGO_SingularMinimizingProblem.pdf
Tamanho:
261.02 KB
Formato:
Adobe Portable Document Format
Descrição:

Licença do pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: