On a singular minimizing problem.
dc.contributor.author | Ercole, Grey | |
dc.contributor.author | Pereira, Gilberto de Assis | |
dc.date.accessioned | 2023-02-07T18:32:43Z | |
dc.date.available | 2023-02-07T18:32:43Z | |
dc.date.issued | 2018 | pt_BR |
dc.description.abstract | For each q ∈ (0, 1) let λq(Ω) := inf k∇vk p Lp(Ω) : v ∈ W1,p 0 (Ω) and Z Ω |v| q dx = 1, where p > 1 and Ω is a bounded and smooth domain of R N , N ≥ 2. We first show that 0 < μ(Ω) := lim q→0+λq(Ω)|Ω| p q < ∞, where |Ω| = R Ω dx. Then, we prove that μ(Ω) = min (k∇vk p Lp(Ω) : v ∈ W1,p 0 (Ω) and lim q→0+ 1 |Ω| Z Ω |v| q dx 1 q = 1) and that μ(Ω) is reached by a function u ∈ W1,p 0 (Ω), which is positive in Ω, belongs to C 0,α(Ω), for some α ∈ (0, 1), and satisfies − div(|∇u| p−2 ∇u) = μ(Ω)|Ω| −1 u −1 in Ω, and Z Ω log udx = 0. We also show that μ(Ω)−1 is the best constant C in the following log-Sobolev type inequality exp 1 |Ω| Z Ω log |v| p dx ≤ C k∇vk p Lp(Ω) , v ∈ W1,p 0 (Ω) and that this inequality becomes an equality if, and only if, v is a scalar multiple of u and C = μ(Ω)−1. | pt_BR |
dc.identifier.citation | ERCOLE, G.; PEREIRA, G. de A. On a singular minimizing problem. Journal D Analyse Mathematique, v. 135, p. 575-598, 2018. Disponível em: <https://link.springer.com/article/10.1007/s11854-018-0040-0>. Acesso em: 06 jul. 2022. | pt_BR |
dc.identifier.doi | https://doi.org/10.1016/j.jmaa.2022.126225 | pt_BR |
dc.identifier.issn | 1565-8538 | |
dc.identifier.uri | http://www.repositorio.ufop.br/jspui/handle/123456789/16136 | |
dc.identifier.uri2 | https://link.springer.com/article/10.1007/s11854-018-0040-0 | pt_BR |
dc.language.iso | en_US | pt_BR |
dc.rights | restrito | pt_BR |
dc.subject | Asymptotic behavior | pt_BR |
dc.subject | log-Sobolev inequality | pt_BR |
dc.subject | p-Laplacian | pt_BR |
dc.subject | Singular problem | pt_BR |
dc.title | On a singular minimizing problem. | pt_BR |
dc.type | Artigo publicado em periodico | pt_BR |
Arquivos
Pacote original
1 - 1 de 1
Nenhuma Miniatura Disponível
- Nome:
- ARTIGO_SingularMinimizingProblem.pdf
- Tamanho:
- 261.02 KB
- Formato:
- Adobe Portable Document Format
- Descrição:
Licença do pacote
1 - 1 de 1
Nenhuma Miniatura Disponível
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: