Preparation of magnetoliposomes with a green, low-cost, fast and scalable methodology and activity study against S. aureus and C. freundii bacterial strains.

Resumo

A novel, fast, low-cost and scalable methodology to prepare stable magnetoliposomes (MGLs), without the use of organic solvents, is described. The concept of the work is based on the dual use of soy lecithin associated to a new liposome preparation methodology. Soy lecithin was used to coat the nanoparticles of magnetite (Fe3 O4 @lecithin) and for encapsulation of Fe3 O4 @lecithin (Lip-Fe3 O4 @lecithin). Liposomes with size less than 160 nm, polydispersity index of 0.25 and zeta potential of -41 mV, were prepared with the use of autoclave and sonication. The liposomal formulations containing magnetite and stigmasterol (Lip-Fe3 O4 @lecithin, Lip-Stigma and Lip-Stigma-Fe3 O4 @lecithin) were shown to be promising for the application as antibacterial. The liposomal formulation and magnetite were characterized by the following techniques: conventional and high-resolution transmission electron microscopy (TEM/HRTEM), energy-filtered transmission electron microscopy (EFTEM), proton nuclear magnetic resonance (1H NMR), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRPD), dynamic light scattering (DLS) and zeta potential. The Lip-Fe3 O4 @lecithin had a minimum inhibitory concentration (MIC) of 8.4 µg mL-1 in the presence of 200 Oe magnetic field against S. aureus.

Descrição

Palavras-chave

Soy lecithin, Liposomes, Magnetite

Citação

SILVA, R. M. F. da C. e et al. Journal of the Brazilian Chemical Society, São Paulo, v. 29, n. 12, p. 2636-2645, dez. 2018. Disponível em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532018001202636&lng=en&nrm=iso&tlng=en>. Acesso em: 7 mar. 2019.

Avaliação

Revisão

Suplementado Por

Referenciado Por