Aplicações dos números complexos à geometria analítica plana.

Nenhuma Miniatura Disponível

Data

2019

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

A proposta deste trabalho e fazer uso da boa estrutura do conjunto dos números complexos, essencialmente de sua geometria, para promover o estudo de objetos e a obtenção de resultados da Geometria Analítica Plana. A boa estrutura do conjunto dos números complexos permite o estudo de resultados clássicos, por exemplo os Teoremas de Ceva, Menelaus e Desargues. O primeiro Teorema estabelece condições necessárias e suficientes para que três cevianas sejam concorrentes, o segundo resultado estabelece condições para a colinearidade de um conjunto de pontos ou para a concorrência de um conjunto de segmentos e o terceiro resultado refere-se a triângulos projetivos e pode ser visto como uma consequência dos dois primeiros resultados.

Descrição

Programa de Pós-Graduação em Matemática em Rede Nacional. Departamento de Matemática, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto.

Palavras-chave

Números complexos, Geometria plana, Teoremas

Citação

CRUZ, Breno Arcanjo Fernandes da. Aplicações dos números complexos à geometria analítica plana. 2019. 68 f. Dissertação (Mestrado Profissional em Matemática em Rede Nacional) – Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, 2019.

Avaliação

Revisão

Suplementado Por

Referenciado Por

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como aberto