Microstructure and mechanical properties of a flash butt welded pearlitic rail.

dc.contributor.authorPorcaro, Rodrigo Rangel
dc.contributor.authorFaria, Geraldo Lúcio de
dc.contributor.authorGodefroid, Leonardo Barbosa
dc.contributor.authorApolonio, Gabriela Ribeiro
dc.contributor.authorCândido, Luiz Cláudio
dc.contributor.authorPinto, Elisângela Silva
dc.date.accessioned2020-09-07T19:58:14Z
dc.date.available2020-09-07T19:58:14Z
dc.date.issued2019
dc.description.abstractThe structural changes resulting from the Flash Butt Welding (FBW) of pearlitic rails have been associated with wear/premature failures, despite this, there are no studies applying dilatometry to correlate the welding thermal cycles with the microstructural development of such material. The microstructural evolution of the heat affected zone is clarified with the aid of dilatometry. The increase in the steel hardenability associated with a larger austenitic grain size promotes the austenite-pearlite transformation at lower temperatures in the grain growth region. This explains why this region has larger pearlite colony size but smaller interlamellar pearlite spacing and higher hardness than the grain refined region. Partial cementite spheroidization in the heat affected zone is responsible for significant decrease in hardness and tensile strength and is correlated to localized dipping, rolling contact fatigue and failures. A dilatometry based methodology is proposed to define a process window and control the post-weld cooling rate at the rail head in order to improve the weld performance due to a better hardness profile, without increasing costs or welding time. For the steel evaluated, a 20% increase in the hardness of the softened area at the HAZ was obtained by dilatometric simulation of a safe accelerated cooling (5 °C/s).pt_BR
dc.identifier.citationPORCARO, R. R. et al. Microstructure and mechanical properties of a flash butt welded pearlitic rail. Journal of Materials Processing Tech., v. 270, p. 20-27, 2019. Disponível em: <https://www.sciencedirect.com/science/article/abs/pii/S0924013619300597>. Acesso em: 10 mar. 2020.pt_BR
dc.identifier.doihttps://doi.org/10.1016/j.jmatprotec.2019.02.013pt_BR
dc.identifier.issn0924-0136
dc.identifier.urihttp://www.repositorio.ufop.br/handle/123456789/12695
dc.identifier.uri2https://www.sciencedirect.com/science/article/abs/pii/S0924013619300597?via%3Dihubpt_BR
dc.language.isoen_USpt_BR
dc.rightsrestritopt_BR
dc.subjectDilatometrypt_BR
dc.subjectRail steelpt_BR
dc.subjectMechanical properties of welded jointspt_BR
dc.subjectWelding metallurgypt_BR
dc.titleMicrostructure and mechanical properties of a flash butt welded pearlitic rail.pt_BR
dc.typeArtigo publicado em periodicopt_BR

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
ARTIGO_MicrostructureMechanicalProperties.pdf
Tamanho:
8.58 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
license.txt
Tamanho:
924 B
Formato:
Item-specific license agreed upon to submission
Descrição: