Análise de confiabilidade estrutural utilizando o método de Monte Carlo e redes neurais.

Nenhuma Miniatura Disponível

Data

2004

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

A análise de confiabilidade estrutural em geral apresenta algumas restrições para alcançar uma solução. Os métodos analíticos FORM e SORM apresentam alguns problemas em função da complexidade da análise, que gera dificuldades na determinação dos pontos de mínimo. O método de simulação de Monte Carlo, embora seja de fácil implementação e absolutamente geral, o grande número de simulações pode exigir um tempo de processamento elevado, o que pode tornar sua aplicação inviável. Este problema tem sido resolvido através de técnicas de redução de variância tais como Amostragem por Importância e Esperança Condicionada. Neste trabalho propõe-se a aplicação de uma rede neural treinada para a substituição de etapas necessárias ao método de Monte Carlo, assim como da substituição do processo de análise estrutural e de confiabilidade, com o objetivo de reduzir o custo computacional requerido na análise. As redes utilizadas neste trabalho são do tipo backpropagation, fazendo-se uso do algoritmo de Levenberg – Marquartdt e do algoritmo do gradiente descendente com momentum. A aplicação das redes neurais, tanto atuando em conjunto com o método de Monte Carlo quanto substituindo toda a análise, proporcionou bons resultados com baixo custo computacional, o que atesta a viabilidade de sua aplicação.

Descrição

Programa de Pós Graduação em Engenharia Civil. Departamento de Engenharia Civil, Escola de Minas, Universidade Federal de Ouro Preto.

Palavras-chave

Construção metálica, Redes neurais - computação, Projeto estrutural - medidas de segurança

Citação

BARBOSA, Anderson Henrique. Análise de confiabilidade estrutural utilizando o método de Monte Carlo e redes neurais. 2004. 124 f. Dissertação (Mestrado em Engenharia Civil) – Departamento de Engenharia Civil, Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, 2004.

Avaliação

Revisão

Suplementado Por

Referenciado Por