Use of a new zwitterionic cellulose derivative for removal of crystal violet and orange II from aqueous solutions.

Resumo

This study describes the synthesis of a new bioadsorbent with zwitterionic characteristics and its successful application for removal of a cationic dye (crystal violet, CV) and an anionic dye (orange II, OII) from single component aqueous systems. The new bi-functionalized cellulose derivative (MC3) was produced by chemical modification of cellulose with succinic anhydride and choline chloride to introduce carboxylic and quaternary ammonium functional groups on the cellulose surface. MC3 was characterized by several wet chemical and spectroscopic methods. The effects of solution pH, contact time, and initial solute concentration on removal of CV and OII by MC3 were investigated. Studies of the desorption and re-adsorption of the dyes were also carried out. The isotherms for adsorption of CV and OII on MC3 were satisfactorily fitted using the Konda and Langmuir models. MC3 showed experimental maximum adsorption capacities of 2403 mg g-1 for CV and 201 mg g-1 for OII. The desorption and re-adsorption results showed that MC3 could be reused in successive adsorption cycles, which is essential for minimizing process costs and waste generation. The findings showed that MC3 is a versatile biosorbent capable of efficiently removing both cationic and anionic dyes.

Descrição

Palavras-chave

Adsorption, Chemical modification, Choline chloride, Succinic anhydride, Dyes

Citação

MARTINS, L. R. et al. Use of a new zwitterionic cellulose derivative for removal of crystal violet and orange II from aqueous solutions. Journal of Hazardous Materials, v. 424, artigo 127401, fev. 2022. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0304389421023694>. Acesso em: 01 ago. 2023.

Avaliação

Revisão

Suplementado Por

Referenciado Por