Rede de convolução para sistema biométrico baseado em EEG.

dc.contributor.advisorMoreira, Gladston Juliano Pratespt_BR
dc.contributor.authorSchons, Thiago
dc.contributor.refereeMoreira, Gladston Juliano Pratespt_BR
dc.contributor.refereeBianchi, Andrea Gomes Campospt_BR
dc.contributor.refereeGomes, David Menottipt_BR
dc.contributor.refereeCoelho, Vitor Nazáriopt_BR
dc.date.accessioned2018-04-23T15:18:07Z
dc.date.available2018-04-23T15:18:07Z
dc.date.issued2018
dc.descriptionPrograma de Pós-Graduação em Ciência da Computação. Departamento de Ciência da Computação, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto.pt_BR
dc.description.abstractSistemas biométricos encontram-se em grande expansão pela necessidade de segurança em todas as esferas da sociedade, nesse contexto sistemas baseados em eletroencefalograma (EEG) vem despertando grande interesse entre os pesquisadores. No entanto, essa modalidade biométrica é suscetível a ruídos na captação de sinais e tem problemas de escala, acurácia e captação em ambientes não controlados, representando um grande desafio. Métodos baseados em redes neurais de convolução vêm sendo explorados na literatura para processamento de sinais e resultados expressivos para sua classificação vem sendo obtidos. Nesse cenário, o método proposto neste trabalho é baseado em Rede Neural de Convolução (CNN) para verificação biométrica e avaliação em uma base de dados da Physionet. Uma técnica de data augmentation baseada em sobreposição dos sinais é proposta para ampliar a quantidade de dados de treinamento da rede de aprendizagem em profundidade. A redução do equal error rate (EER) de 4,5% para 0,19% nos testes baseline em comparação com a literatura mostram que o método é um caminho promissor na representação de sinais cerebrais para biometria.pt_BR
dc.description.abstractenBiometric systems are in great expansion by the need for security in all spheres of society, in this context systems based on electroencephalogram (EEG) has aroused great interest among researchers. However, this biometric modality is susceptible to noise in signal capture and has problems of scale, accuracy and capture in uncontrolled environments, representing a great challenge. Methods based on convolution neural networks (CNN) have been explored in the literature for signal processing and expressive results for their classication have been obtained. In this scenario, the proposed method is based on CNN for biometric verication and evaluation in a Physionet database. A data augmentation technique based on overlapping signals is proposed to increase the amount of training data for the deep learning network. The reduction of the equal error rate (EER) from 4.5% to 0.19% in the baseline tests compared to the literature shows that the method is a promising path in the representation of brain signals for biometrics.pt_BR
dc.identifier.citationSCHONS, Thiago. Rede de convolução para sistema biométrico baseado em EEG. 2018. 68 f. Dissertação (Mestrado em Ciência da Computação) - Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, 2018.pt_BR
dc.identifier.urihttp://www.repositorio.ufop.br/handle/123456789/9850
dc.language.isopt_BRpt_BR
dc.rightsabertopt_BR
dc.rights.licenseAutorização concedida ao Repositório Institucional da UFOP pelo autor(a), 11/04/2018, com as seguintes condições: disponível sob Licença Creative Commons 4.0, que permite copiar, distribuir e transmitir o trabalho, desde que seja citado o autor e licenciante. Não permite o uso para fins comerciais nem a adaptação.pt_BR
dc.subjectBiometriapt_BR
dc.subjectRede neuralpt_BR
dc.subjectEletroencefalogramapt_BR
dc.subjectRede de convoluçãopt_BR
dc.titleRede de convolução para sistema biométrico baseado em EEG.pt_BR
dc.typeDissertacaopt_BR

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
DISSERTAÇÃO_RedeConvoluçãoSistema.pdf
Tamanho:
2.45 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
license.txt
Tamanho:
924 B
Formato:
Item-specific license agreed upon to submission
Descrição: