Chemical fingerprint of non‐aged artisanal sugarcane spirits using kohonen artifcial neural network.

dc.contributor.authorCaetano, Daniela
dc.contributor.authorLima, Clara Mariana Gonçalves
dc.contributor.authorSanson, Ananda Lima
dc.contributor.authorSilva, Débora Faria
dc.contributor.authorHassemer, Guilherme de Souza
dc.contributor.authorVerruck, Silvani
dc.contributor.authorGregório, Sandra Regina
dc.contributor.authorSilva, Gilmare Antônia da
dc.contributor.authorAfonso, Robson José de Cássia Franco
dc.contributor.authorCoutrim, Maurício Xavier
dc.contributor.authorBatiha, Gaber El‐Saber
dc.contributor.authorGandara, Jesus Simal
dc.date.accessioned2023-05-24T19:18:16Z
dc.date.available2023-05-24T19:18:16Z
dc.date.issued2022pt_BR
dc.description.abstractThis study focuses on the determination of the chemical profle of 24 non-aged Brazilian artisanal sugarcane spirits (cachaça) samples through chromatographic quantifcation and chemometric treatment via principal component analysis (PCA) and Kohonen’s neural network. In total, forty-seven (47) chemical compounds were identifed in the samples of non-aged artisanal cachaça, in addition to determining alcohol content, volatile acidity, and copper. For the PCA of the chemical compounds’ profle, it could be observed that the samples were grouped into seven groups. On the other hand, the variables’ bearings were grouped together, making it difcult to separate the components in relation to the sample groups and reducing the chances of obtaining all the necessary information. However, by using a Kohonen’s neural network, samples were grouped into eight groups. This tool proved to be more accurate in the groups’ formation. Among the chemical classes of the com- pounds observed, esters stood out, followed by alcohols, acids, aldehydes, ketones, phenol, and copper. The abundance of esters in these samples may suggest that these compounds would be part of the regional standard for cachaças produced in the region of Salinas, Minas Gerais.pt_BR
dc.identifier.citationCAETANO, D. et al. Chemical fingerprint of non‐aged artisanal sugarcane spirits using kohonen artifcial neural network. Food Analytical Methods, v. 15, p. 890–907, 2022. Disponível em: <https://link.springer.com/article/10.1007/s12161-021-02160-8>. Acesso em: 11 out. 2022.pt_BR
dc.identifier.doihttps://doi.org/10.1007/s12161-021-02160-8pt_BR
dc.identifier.issn1936-976X
dc.identifier.urihttp://www.repositorio.ufop.br/jspui/handle/123456789/16654
dc.identifier.uri2https://link.springer.com/article/10.1007/s12161-021-02160-8pt_BR
dc.language.isoen_USpt_BR
dc.rightsrestritopt_BR
dc.subjectTraceabilitypt_BR
dc.subjectAuthenticitypt_BR
dc.subjectSelf-organizing mapspt_BR
dc.titleChemical fingerprint of non‐aged artisanal sugarcane spirits using kohonen artifcial neural network.pt_BR
dc.typeArtigo publicado em periodicopt_BR

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
ARTIGO_ChemicalFingerprintNon.pdf
Tamanho:
1.35 MB
Formato:
Adobe Portable Document Format
Descrição:

Licença do pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: