Logo detection with second judge single shot multibox.

dc.contributor.advisorCámara Chávez, Guillermopt_BR
dc.contributor.advisorBianchi, Andrea Gomes Campospt_BR
dc.contributor.authorCoelho, Leonardo Bombonato Simões
dc.contributor.refereeCámara Chávez, Guillermopt_BR
dc.contributor.refereeFerreira, Anderson Almeidapt_BR
dc.contributor.refereeBianchi, Andrea Gomes Campospt_BR
dc.contributor.refereeSchwartz, William Robsonpt_BR
dc.date.accessioned2023-02-03T18:50:33Z
dc.date.available2023-02-03T18:50:33Z
dc.date.issued2017pt_BR
dc.descriptionPrograma de Pós-Graduação em Ciência da Computação. Departamento de Ciência da Computação, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto.pt_BR
dc.description.abstractWith the increasing popularity of Social Networks, the way people interact has changed and the huge amount of data generated open doors to new strategies and marketing analysis. According to Instagram 1 and Tumblr2 an average of 95 and 35 million photos, respectively, are published every day. These pictures contain several implicit or explicit brand logos, this allows us to research how can a brand be better widespread based in regional, temporal and cultural criteria. Using advanced computer vision techniques for object detection and recognition, we can extract information from these images, making possible to understand the impact and the comprehensiveness of a specific brand. This thesis proposes a logo detection technique based on a Convolutional Neural Network (CNN), also used as a second judge. Our proposal is built on the Single Shot Multibox (SSD). In our research, we explored several approaches of the second judge and managed to reduce significantly the number of false positives in comparison with the original approach. Our research outperformed all the others researches on two different datasets: FlickrLogos-32 and Logos-32plus. On the FlickrLogos-32, we surpass the actual state-of-the-art method by 5.2% of F-score and for the Logos-32Plus by 3.0% of F-score.pt_BR
dc.identifier.citationCOELHO, Leonardo Bombonato Simões. Logo detection with second judge single shot multibox. 2017. 79 f. Dissertação (Mestrado em Ciência da Computação) - Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, 2022.pt_BR
dc.identifier.urihttp://www.repositorio.ufop.br/jspui/handle/123456789/16083
dc.language.isoen_USpt_BR
dc.rightsabertopt_BR
dc.rights.licenseAutorização concedida ao Repositório Institucional da UFOP pelo(a) autor(a) em 15/07/2022 com as seguintes condições: disponível sob Licença Creative Commons 4.0 que permite copiar, distribuir e transmitir o trabalho, desde que sejam citados o autor e o licenciante. Não permite o uso para fins comerciais.pt_BR
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/us/*
dc.subjectReconhecimento de padrõespt_BR
dc.subjectAprendizagempt_BR
dc.subjectAprendizado do computadorpt_BR
dc.titleLogo detection with second judge single shot multibox.pt_BR
dc.typeDissertacaopt_BR

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Imagem de Miniatura
Nome:
DISSERTAÇÃO_LogoDetectionSecond .pdf
Tamanho:
16.3 MB
Formato:
Adobe Portable Document Format
Descrição:

Licença do pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: