Object-based image retrieval using local feature extraction and relevance feedback.

dc.contributor.authorFreitas, Mário H. G.
dc.contributor.authorPádua, Flávio Luis Cardeal
dc.contributor.authorAssis, Guilherme Tavares de
dc.date.accessioned2015-01-26T11:12:55Z
dc.date.available2015-01-26T11:12:55Z
dc.date.issued2013
dc.description.abstractThis paper addresses the problem of object-based image retrieval, by using local feature extraction and a relevance feedback mechanism for quickly narrowing down the image search process to the user needs. This approach relies on the hypothesis that semantically similar images are clustered in some feature space and, in this scenario: (i) computes image signatures that are invariant to scale and rotation using SIFT, (ii) calculates the vector of locally aggregated descriptors (VLAD) to make a fixed length descriptor for the images, (iii) reduce the VLAD descriptor dimensionality with Principal Component Analysis (PCA) and (iv) uses the k-Means algorithm for grouping images that are semantically similar. The proposed approach has been successfully validated using 33,192 images from the ALOI database, obtaining a mean recall value of 47.4% for searches of images containing objects that are identical to the object query and 20.7% for searches of images containing different objects (albeit visually similar) to the object query.pt_BR
dc.identifier.citationFREITAS, M. H. G.; PÁDUA, F. L.C.; ASSIS, G. T. de. Object-based image retrieval using local feature extraction and relevance feedback. International Journal of Computer Applications, v. 78, p. 8-14, 2013. Disponível em: <http://research.ijcaonline.org/volume78/number7/pxc3891239.pdf>. Acesso em: 22 jan. 2015.pt_BR
dc.identifier.doihttps://doi.org/10.5120/13499-1239
dc.identifier.issn0975-8887
dc.identifier.urihttp://www.repositorio.ufop.br/handle/123456789/4360
dc.language.isoen_USpt_BR
dc.rights.licenseO periódico International Journal of Computer Applications permite o arquivamento da versão PDF do editor. Fonte: Sherpa/Romeo <http://www.sherpa.ac.uk/romeo/search.php?issn=0975-8887>. Acesso em: 02 jan. 2017.pt_BR
dc.subjectRetrieval imagept_BR
dc.subjectRelevance feedbackpt_BR
dc.subjectFeature extractionpt_BR
dc.titleObject-based image retrieval using local feature extraction and relevance feedback.pt_BR
dc.typeArtigo publicado em periodicopt_BR

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
ARTIGO_ObjectBasedImage.pdf
Tamanho:
918.03 KB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
license.txt
Tamanho:
2.57 KB
Formato:
Item-specific license agreed upon to submission
Descrição: