Formation of secondary containment systems using permeation of colloidal silica.

dc.contributor.authorMcCartney, John S.
dc.contributor.authorNogueira, Christianne de Lyra
dc.contributor.authorHomes, Daniel
dc.contributor.authorZornberg, Jorge Gabriel
dc.date.accessioned2017-08-31T14:27:13Z
dc.date.available2017-08-31T14:27:13Z
dc.date.issued2011
dc.description.abstractU.S. Environmental Protection Agency (USEPA) regulations require the capture of spills from liquid tanks containing hazardous chemicals by using a secondary containment system. Compacted clay or geomembrane liners are commonly used in secondary containment systems, but they are cumbersome when used in conjunction with existing liquid tanks because of pipeline networks surrounding the tanks. This study evaluates the formation of hydraulic barriers for secondary containment through the permeation of colloidal silica grout. A simplified infiltration model is presented to predict the downward movement of the colloidal silica grout into a soil layer, considering the timedependent increase in dynamic viscosity of the colloidal silica for different concentrations of an electrolyte accelerator. Because the simplified infiltration model cannot predict the soil-grout interaction or the permeation of the colloidal silica by fingering, its results were calibrated by using the observations from a large-scale column test involving the permeation of colloidal silica into sand. The predicted position of the wetting front was found to match that of the experiment when the parameter governing the change in viscosity of the colloidal silica was increased by a factor of 30. The infiltration model calibrated with observations from column infiltration experiments provides a simple approach to the design of the secondary containment systems using permeation of colloidal silica.pt_BR
dc.identifier.citationMcCARTNEY, J. et al. Formation of secondary containment systems using permeation of colloidal silica. Journal of Environmental Engineering, New York, v. 137, p. 444-453, 2011. Disponível em: <http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EE.1943-7870.0000345>. Acesso em: 20 jul. 2017.pt_BR
dc.identifier.doihttps://doi.org/10.1061/(ASCE)EE.1943-7870.0000345
dc.identifier.issn1943-7870
dc.identifier.urihttp://www.repositorio.ufop.br/handle/123456789/8618
dc.identifier.uri2http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EE.1943-7870.0000345pt_BR
dc.language.isoen_USpt_BR
dc.rightsrestritopt_BR
dc.subjectColloidal silicapt_BR
dc.subjectGroutpt_BR
dc.subjectPermeationpt_BR
dc.subjectInfiltrationpt_BR
dc.titleFormation of secondary containment systems using permeation of colloidal silica.pt_BR
dc.typeArtigo publicado em periodicopt_BR

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
ARTIGO_FormationSecondaryContainment.pdf
Tamanho:
1.09 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
license.txt
Tamanho:
924 B
Formato:
Item-specific license agreed upon to submission
Descrição: