EEG time series learning and classification using a hybrid forecasting model calibrated with GVNS.

dc.contributor.authorCoelho, Vitor Nazário
dc.contributor.authorCoelho, Igor Machado
dc.contributor.authorCoelho, Bruno Nazário
dc.contributor.authorSouza, Marcone Jamilson Freitas
dc.contributor.authorGuimarães, Frederico Gadelha
dc.contributor.authorLuz, Eduardo José da Silva
dc.contributor.authorBarbosa, Alexandre Costa
dc.contributor.authorCoelho, Mateus Nazario
dc.contributor.authorNetto, Guilherme Gaigher
dc.contributor.authorPinto, Alysson Alves
dc.contributor.authorElias, Marcelo Eustaquio Versiani
dc.contributor.authorGonçalves Filho, Dalton Cesar de Oliveira
dc.contributor.authorOliveira, Thays Aparecida de
dc.date.accessioned2018-02-23T12:35:01Z
dc.date.available2018-02-23T12:35:01Z
dc.date.issued2017
dc.description.abstractBrain activity can be seen as a time series, in particular, electroencephalogram (EEG) can measure it over a specific time period. In this regard, brain fingerprinting can be subjected to be learned by machine learning techniques. These models have been advocated as EEG-based biometric systems. In this study, we apply a recent Hybrid Focasting Model, which calibrates its if-then fuzzy rules with a hybrid GVNS metaheuristic algorithm, in order to learn those patterns. Due to the stochasticity of the VNS procedure, models with different characteristics can be generated for each individual. Some EEG recordings from 109 volunteers, measured using a 64-channels EEGs, with 160 HZ of sampling rate, are used as cases of study. Different forecasting models are calibrated with the GVNS and used for the classification purpose. New rules for classifying the individuals using forecasting models are introduced. Computational results indicate that the proposed strategy can be improved and embedded in the future biometric systems.pt_BR
dc.identifier.citationCOELHO, V. N. et al. EEG time series learning and classification using a hybrid forecasting model calibrated with GVNS. Electronic Notes in Discrete Mathematics, v. 58, p. 79-86, 2017. Disponível em: <https://www.sciencedirect.com/science/article/pii/S1571065317300471>. Acesso em: 16 jan. 2018.pt_BR
dc.identifier.doihttps://doi.org/10.1016/j.endm.2017.03.011
dc.identifier.issn1571-0653
dc.identifier.urihttp://www.repositorio.ufop.br/handle/123456789/9586
dc.identifier.uri2https://www.sciencedirect.com/science/article/pii/S1571065317300471pt_BR
dc.language.isoen_USpt_BR
dc.rightsrestritopt_BR
dc.subjectElectroencephalogrampt_BR
dc.subjectNeighborhood searchpt_BR
dc.subjectBiometricspt_BR
dc.subjectVariablept_BR
dc.titleEEG time series learning and classification using a hybrid forecasting model calibrated with GVNS.pt_BR
dc.typeArtigo publicado em periodicopt_BR

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
ARTIGO_EEGTimeSeries.pdf
Tamanho:
464.09 KB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
license.txt
Tamanho:
924 B
Formato:
Item-specific license agreed upon to submission
Descrição: