Bringing deep learning to the fields and forests : leaf reconstruction and shape estimation.

dc.contributor.authorSilva, Mateus Coelho
dc.contributor.authorBianchi, Andrea Gomes Campos
dc.contributor.authorRibeiro, Sérvio Pontes
dc.contributor.authorOliveira, Ricardo Augusto Rabelo
dc.date.accessioned2023-07-21T19:16:19Z
dc.date.available2023-07-21T19:16:19Z
dc.date.issued2022pt_BR
dc.description.abstractOne of the indicators of ecosystem health is leaf health. Among the leading indicators studied in leaves, herbivory and dis- ease presence are relevant indicators of ecosystem behavior. Several methods in the literature study leaf damage estimation processes. Most of the previous studies display the usage of methods that display limited generalism. In previous work, we displayed the possibility of using conditional GANs to estimate the leaf damage. Our results displayed that this approach increases the generalism of the solution by seeking to reconstruct the original leaf shape. In this paper, we present a deeper discussion on the results and a previous discussion on how to transport this method to the forests. We present the whole method used for approximating the leaf shape, assessing further results that display the method’s robustness. Finally, we also show preliminary methods that can be used to embed this method in edge computing hardware.pt_BR
dc.identifier.citationSILVA, M. C. et al. Bringing deep learning to the fields and forests: leaf reconstruction and shape estimation. SN Computer Science, v. 3, artigo 195, 2022. Disponível em: <https://link.springer.com/article/10.1007/s42979-022-01082-4>. Acesso em: 06 jul. 2023.pt_BR
dc.identifier.doihttps://doi.org/10.1007/s42979-022-01082-4pt_BR
dc.identifier.issn2661-8907
dc.identifier.urihttp://www.repositorio.ufop.br/jspui/handle/123456789/17031
dc.identifier.uri2https://link.springer.com/article/10.1007/s42979-022-01082-4pt_BR
dc.language.isoen_USpt_BR
dc.rightsrestritopt_BR
dc.subjectConditional GANpt_BR
dc.subjectLeaf shape estimationpt_BR
dc.subjectDefoliation estimationpt_BR
dc.titleBringing deep learning to the fields and forests : leaf reconstruction and shape estimation.pt_BR
dc.typeArtigo publicado em periodicopt_BR

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
ARTIGO_BringingDeepLearning.pdf
Tamanho:
2 MB
Formato:
Adobe Portable Document Format
Descrição:

Licença do pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: