Detecção de solos contaminados : uma proposta utilizando aprendizado de máquina em imagens hiperespectrais.

Nenhuma Miniatura Disponível

Data

2021

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

Sensoriamento remoto em locais onde podem ocorrer contaminação de solo por meio de óleos brutos, podem ganhar um reforço com processos ágeis e não destrutivos de caracterização dos compostos. Há interesse em mapear solos em busca de vazamento de óleo por empresas que querem minimizar a perda de matéria-prima e a contaminação do meio ambiente. A identificação da composição de contaminantes e solos ´e comumente realizada por métodos tradicionais em laboratório, tais métodos são precisos, invasivos e demandam de conhecimento t´técnico e equipamentos para análise. Métodos que utilizam imagens espectrais são não invasivos, rápidos e podem ser realizados em campo ou laboratório. O objetivo deste estudo é desenvolver uma abordagem de teste de solo econômica, rápida, não invasiva e autônoma, utilizando dados coletados através da espectroscopia de ondas infravermelhas que alimenta nossos modelos Machine Learning na identificação de solos crus e contaminados por óleos (petróleo bruto) identificando o solo, o contaminante e a concentração. A biblioteca de dados hiper espectral alimenta o desenvolvimento de um algoritmo de aprendizagem de máquina, a fim de classificar solos, óleos e suas concentrações. Assim, automatizando o mapeamento de infiltrações e vazamentos em terra. Propomos três fluxos de aprendizado com modelos Random Forest que apresentam resultados com acurácia acima de 90%. Os testes foram realizados utilizando três diferentes tipos de dados, que indicam o maior benefício de desempenho quando utiliza-se os dados filtrados com o método contínuo removido (espectro normalizado) na identificação de solos e contaminantes. Na identificação da concentração os dados filtrados pela média apresentaram melhor resultado. Os resultados dos testes do fluxo de aprendizado dependente, indicam taxa de acerto média de 98% na classificação dos solos, 94% na classificação dos contaminantes e 93% na classificação das concentrações. Outras métricas como F1-Score, Revocação e Precisão apresentam resultados específicos de cada rótulo, evidenciando o desempenho dos classificadores ao identificá-los. O desempenho dos fluxos de aprendizado manifestara resultados constantes, com baixa variância e dispersão, e taxas de acerto acima de 93% no geral. Os resultados apresentados, sugerem que a tecnologia tem grande potencial de uso no monitoramento ambiental de solos, ao longo de dutos e refinarias a procura de vazamentos.

Descrição

Programa de Pós-Graduação em Ciência da Computação. Departamento de Ciência da Computação, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto.

Palavras-chave

Aprendizado do computador, Sensoriamento remoto, Florestas

Citação

DUARTE, F. H. O. Detecção de solos contaminados: uma proposta utilizando aprendizado de máquina em imagens hiperespectrais. 2021. 119 f. Dissertação (Mestrado em Ciência da Computação) - Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, 2021.

Avaliação

Revisão

Suplementado Por

Referenciado Por

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como aberto