Segmentação de núcleos em células cervicais obtidas em exames de Papanicolaou.

dc.contributor.advisorSouza, Marcone Jamilson Freitaspt_BR
dc.contributor.advisorBianchi, Andrea Gomes Campospt_BR
dc.contributor.authorDiniz, Débora Nasser
dc.contributor.refereeSouza, Marcone Jamilson Freitaspt_BR
dc.contributor.refereeBianchi, Andrea Gomes Campospt_BR
dc.contributor.refereeMedeiros, Fátima Nelsizeuma Sombra dept_BR
dc.contributor.refereePenna, Puca Huachi Vazpt_BR
dc.date.accessioned2019-10-17T17:14:14Z
dc.date.available2019-10-17T17:14:14Z
dc.date.issued2019
dc.descriptionPrograma de Pós-Graduação em Ciência da Computação. Departamento de Ciência da Computação, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto.pt_BR
dc.description.abstractEste trabalho tem seu foco na detecção de núcleos em imagens sintéticas de células cervicais. Este é um passo importante na construção de uma ferramenta computacional para ajudar os citopatologistas a identificarem alterações celulares a partir de exames de Papanicolaou. Para detectar esses núcleos propomos duas abordagens, a primeira baseada em Iterated Local Search (ILS) e a segunda em Árvore de Decisão (DT). O objetivo é melhorar a assertividade do exame e reduzir a carga de trabalho do profissional. As duas abordagens utilizam características de uma região da imagem para identificar um núcleo. Para ambas, foi necessário fazer um pré-processamento das imagens para dividí-las em regiões a serem analisadas. Para isto, foram utilizados os algoritmos Simple Linear Iterative Clustering (SLIC) e Density Based Spatial Clustering of Applications with Noise (DBSCAN). No ILS, foi feita uma investigação para saber quais dessas características são relevantes para a identificação dos núcleos. O pacote irace foi utilizado para fazer a calibração automática dos parâmetros do ILS. Já para a DT proposta, foi construída uma base de dados com todas as características extraídas das regiões e feita uma seleção das mais importantes por meio de uma matriz de correlação. Com essas características selecionadas foi feito o treinamento. Por fim, as abordagens propostas foram comparadas entre si e com outros métodos da literatura segundo as métricas revocação, precisão e F1, usando-se o banco de dados ISBI Overlapping Cytology Image Segmentation Challenge (2014). Os resultados obtidos mostraram a superioridade da abordagem via DT sobre o ILS em todas as métricas, assim como sua superioridade sobre todos os outros métodos da literatura com relação às métricas F1 e revocação.pt_BR
dc.description.abstractenApplications with Noise (DBSCAN) algorithms were used. In ILS, an investigation was made to know which of these characteristics are relevant for nucleus identification. The irace package was used to calibrate ILS parameters automatically. Besides, for the DT model, this work extracted several features from the regions in order to select the best characteristics that represent a nucleus region. The selection was made utilizing a correlation matrix, and the chosen features were used to train the model. Finally, the proposed approaches were compared with each other and with other methods in the literature according to recall, precision, and F1 metrics using the ISBI Overlapping Cytology Image Segmentation Challenge database (2014). The results showed the superiority of the DT approach over the ILS in all metrics. Also, the DT model presented better results for F1 and recall metrics over all other literature methods.pt_BR
dc.identifier.citationDINIZ, Débora Nasser. Segmentação de núcleos em células cervicais obtidas em exames de Papanicolaou. 2019. 61 f. Dissertação (Mestrado em Ciência da Computação) - Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, 2019.pt_BR
dc.identifier.urihttp://www.repositorio.ufop.br/handle/123456789/11758
dc.language.isopt_BRpt_BR
dc.rightsabertopt_BR
dc.rights.licenseAutorização concedida ao Repositório Institucional da UFOP pelo(a) autor(a) em 10/10/2019 com as seguintes condições: disponível sob Licença Creative Commons 4.0 que permite copiar, distribuir e transmitir o trabalho desde que sejam citados o autor e o licenciante. Não permite o uso para fins comerciais nem a adaptação.pt_BR
dc.subjectSegmentação de núcleospt_BR
dc.subjectCélulas cervicaispt_BR
dc.subjectÁrvore de decisãopt_BR
dc.titleSegmentação de núcleos em células cervicais obtidas em exames de Papanicolaou.pt_BR
dc.typeDissertacaopt_BR

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
DISSERTAÇÃO_SegmentaçãoNúcleosCélulas.pdf
Tamanho:
2.87 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
license.txt
Tamanho:
924 B
Formato:
Item-specific license agreed upon to submission
Descrição: