MAD-STEC : a method for multiple automatic detection of space-time emerging clusters.

dc.contributor.authorVeloso, Bráulio Miranda
dc.contributor.authorCorrea, Thais Rotsen
dc.contributor.authorPrates, Marcos O.
dc.contributor.authorOliveira, Gabriel F.
dc.contributor.authorTavares, Andréa Iabrudi
dc.date.accessioned2017-02-01T13:22:30Z
dc.date.available2017-02-01T13:22:30Z
dc.date.issued2016
dc.description.abstractCrime or disease surveillance commonly rely in space-time clustering methods to identify emerging patterns. The goal is to detect spatial-temporal clusters as soon as possible after its occurrence and to control the rate of false alarms. With this in mind, a spatio-temporal multiple cluster detection method was developed as an extension of a previous proposal based on a spatial version of the Shiryaev– Roberts statistic. Besides the capability of multiple cluster detection, the method have less input parameter than the previous proposal making its use more intuitive to practitioners. To evaluate the new methodology a simulation study is performed in several scenarios and enlighten many advantages of the proposed method. Finally, we present a case study to a crime data-set in Belo Horizonte, Brazil.pt_BR
dc.identifier.citationVELOSO, B. M. MAD-STEC: a method for multiple automatic detection of space-time emerging clusters. Statistics and Computing, v. 1, p. 1-12, 2016. Disponível em: <http://link.springer.com/article/10.1007/s11222-016-9673-y>. Acesso em: 23 jan. 2017.pt_BR
dc.identifier.doihttps://doi.org/10.1007/s11222-016-9673-y
dc.identifier.issn1573-1375
dc.identifier.urihttp://www.repositorio.ufop.br/handle/123456789/7180
dc.identifier.uri2http://link.springer.com/article/10.1007/s11222-016-9673-ypt_BR
dc.language.isoen_USpt_BR
dc.rightsabertopt_BR
dc.subjectSurveillancept_BR
dc.subjectPoint patternpt_BR
dc.subjectProspective space-time surveillancept_BR
dc.subjectSpace-time clusteringpt_BR
dc.titleMAD-STEC : a method for multiple automatic detection of space-time emerging clusters.pt_BR
dc.typeArtigo publicado em periodicopt_BR

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
ARTIGO_MADSTECMethod.pdf
Tamanho:
2.4 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
license.txt
Tamanho:
924 B
Formato:
Item-specific license agreed upon to submission
Descrição: