A hybrid deep learning forecasting model using GPU disaggregated function evaluations applied for household electricity demand forecasting.

dc.contributor.authorCoelho, Vitor Nazário
dc.contributor.authorCoelho, Igor Machado
dc.contributor.authorRios, Eyder
dc.contributor.authorThiago Filho, Alexandre Magno de S.
dc.contributor.authorReis, Agnaldo José da Rocha
dc.contributor.authorCoelho, Bruno Nazário
dc.contributor.authorAlves, Alysson
dc.contributor.authorGaigher Netto, Guilherme
dc.contributor.authorSouza, Marcone Jamilson Freitas
dc.contributor.authorGuimarães, Frederico Gadelha
dc.date.accessioned2018-01-26T13:24:21Z
dc.date.available2018-01-26T13:24:21Z
dc.date.issued2016
dc.description.abstractAs the new generation of smart sensors is evolving towards high sampling acquisitions systems, the amount of information to be handled by learning algorithms has been increasing. The Graphics Processing Unit (GPU) architectures provide a greener alternative with low energy consumption for mining big-data, harnessing the power of thousands of processing cores in a single chip, opening a widely range of possible applications. Here, we design a novel evolutionary computing GPU parallel function evaluation mechanism, in which different parts of time series are evaluated by different processing threads. By applying a metaheuristics fuzzy model in a low-frequency data for household electricity demand forecasting, results suggested that the proposed GPU learning strategy is scalable as the number of training rounds increases.pt_BR
dc.identifier.citationCOELHO, V. N. et al. A hybrid deep learning forecasting model using GPU disaggregated function evaluations applied for household electricity demand forecasting. Energy Procedia, v. 103, p. 280-285, 2016. Disponível em: <https://www.sciencedirect.com/science/article/pii/S1876610216314965>. Acesso em: 16 jan. 2018.pt_BR
dc.identifier.doihttps://doi.org/10.1016/j.egypro.2016.11.286
dc.identifier.issn1876-6102
dc.identifier.urihttp://www.repositorio.ufop.br/handle/123456789/9365
dc.language.isoen_USpt_BR
dc.rightsabertopt_BR
dc.rights.licenseThis is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Fonte: o próprio artigo.pt_BR
dc.subjectMicrogridpt_BR
dc.subjectHousehold electricity demandpt_BR
dc.subjectDeep learningpt_BR
dc.subjectGraphics processingpt_BR
dc.titleA hybrid deep learning forecasting model using GPU disaggregated function evaluations applied for household electricity demand forecasting.pt_BR
dc.typeArtigo publicado em periodicopt_BR

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
ARTIGO_HybridDeepLearning.pdf
Tamanho:
1017.72 KB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
license.txt
Tamanho:
924 B
Formato:
Item-specific license agreed upon to submission
Descrição: