Aprendizado de máquina aplicado em previsão de curto prazo de valores de indicadores de nível de água.
dc.contributor.advisor | Pessin, Gustavo | pt_BR |
dc.contributor.advisor | Torres, Vidal Félix Navarro | pt_BR |
dc.contributor.advisor | Sabino, Jodelson Aguilar | pt_BR |
dc.contributor.author | Kümmel, Luiz Frederico de Freitas | |
dc.contributor.referee | Pessin, Gustavo | pt_BR |
dc.contributor.referee | Sabino, Jodelson Aguilar | pt_BR |
dc.contributor.referee | Girao Sotomayor, Juan Manuel | pt_BR |
dc.contributor.referee | Hidaka, Renato | pt_BR |
dc.date.accessioned | 2021-12-10T17:44:56Z | |
dc.date.available | 2021-12-10T17:44:56Z | |
dc.date.issued | 2021 | pt_BR |
dc.description | Programa de Pós-Graduação em Instrumentação, Controle e Automação de Processos de Mineração. Departamento de Engenharia de Controle e Automação, Escola de Minas, Universidade Federal de Ouro Preto. | pt_BR |
dc.description.abstract | A estabilidade e solidez de barragens de rejeito para resíduos de atividades industriais de mineração é de importância primordial para a segurança da sociedade e meio ambiente localizado a sua jusante. Para assegurar as essenciais exigências de segurança e exposição ao risco das barragens ao longo da sua vida útil, devem ser implementadas ações mitigatórias de prevenção e controle dessas condições, nesse intuito esse trabalho visa aplicar métodos de Machine Learning, para prever o comportamento dos indicadores de nível de água associados a carta de risco. Os algoritmos de machine learning mostraram elevadas taxas de acerto para predição, sendo que a combinação de métodos de classificação e regressão permitiu aumentar ainda mais a qualidade de resposta do sistema proposto. | pt_BR |
dc.description.abstracten | The stability and solidity of tailings dams for residues from industrial mining activities is of paramount importance for the safety of society and the environment located downstream. To ensure the essential safety and risk exposure requirements of dams throughout their useful life, mitigation actions must be implemented to prevent and control these conditions. To this end, this work aims to apply Machine Learning methods to predict the behavior of water level associated with the risk chart. Machine learning algorithms showed high success rates for prediction, and the combination of classification and regression methods allowed to further increase the response quality of the proposed system. | pt_BR |
dc.identifier.citation | KÜMMEL, Luiz Frederico de Freitas. Aprendizado de máquina aplicado em previsão de curto prazo de valores de indicadores de nível de água. 2021. 72 f. Dissertação (Mestrado Profissional em Instrumentação, Controle e Automação de Processos de Mineração) - Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, 2021. | pt_BR |
dc.identifier.uri | http://www.repositorio.ufop.br/jspui/handle/123456789/14169 | |
dc.language.iso | pt_BR | pt_BR |
dc.rights | aberto | pt_BR |
dc.rights.license | Autorização concedida ao Repositório Institucional da UFOP pelo(a) autor(a) em 02/12/2021 com as seguintes condições: disponível sob Licença Creative Commons 4.0 que permite copiar, distribuir e transmitir o trabalho, desde que sejam citados o autor e o licenciante. Não permite o uso para fins comerciais nem a adaptação. | pt_BR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Barragens de rejeitos | pt_BR |
dc.subject | Aprendizado de máquina | pt_BR |
dc.subject | Indicadores de nível | pt_BR |
dc.title | Aprendizado de máquina aplicado em previsão de curto prazo de valores de indicadores de nível de água. | pt_BR |
dc.title.alternative | Machine learning applied in short of water level indicator value. | pt_BR |
dc.type | Dissertacao | pt_BR |
Arquivos
Pacote original
1 - 1 de 1
Nenhuma Miniatura Disponível
- Nome:
- DISSERTAÇÃO_ApredizadoMáquinaAplicado.pdf
- Tamanho:
- 1.46 MB
- Formato:
- Adobe Portable Document Format
- Descrição:
Licença do pacote
1 - 1 de 1
Nenhuma Miniatura Disponível
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: