Existence and multiplicity results for an elliptic problem involving cylindrical weights and a homogeneous term μ.

Resumo

We consider the following elliptic problem ⎧⎨ ⎩ − div |∇u| p−2 ∇u |y| ap = μ |u| p−2 u |y| p(a+1) + h(x) |u| q−2 u |y| bq + f(x, u) in Ω, u = 0 on ∂Ω, in an unbounded cylindrical domain Ω := {(y, z) ∈ Rm+1 × RN−m−1 ; 0 <A< |y| <B< ∞}, where A, B ∈ R+, p > 1, 1 ≤ m<N − p, q := N p N − p(a + 1 − b), 0 ≤ μ < μ := m + 1 − p(a + 1) p p , h ∈ L N q (Ω) ∩ L∞(Ω) is a positive function and f : Ω × R → R is a Carath ́eodory function with growth at infinity. Using the Krasnoselski’s genus and applying Z2 version of the Mountain Pass Theorem, we prove, under certain assumptions about f, that the above problem has infinite invariant solutions.

Descrição

Palavras-chave

Supercritical, Degenerate operator, Variational methods

Citação

ASSUNÇÃO, R. B. et al. Existence and multiplicity results for an elliptic problem involving cylindrical weights and a homogeneous term μ. Mediterranean Journal of Mathematics, v. 16, n. 33, 2019. Disponível em: <https://link.springer.com/article/10.1007/s00009-019-1317-y>. Acesso em: 06 jul. 2022.

Avaliação

Revisão

Suplementado Por

Referenciado Por