Torsion functions and the Cheeger problem : a fractional approach.
dc.contributor.author | Bueno, Hamilton Prado | |
dc.contributor.author | Ercole, Grey | |
dc.contributor.author | Macedo, Shirley da Silva | |
dc.contributor.author | Pereira, Gilberto A. | |
dc.date.accessioned | 2018-04-16T11:30:11Z | |
dc.date.available | 2018-04-16T11:30:11Z | |
dc.date.issued | 2016 | |
dc.description.abstract | Let Ω be a Lipschitz bounded domain of ℝN, N ≥ 2. The fractional Cheeger constant hs(Ω), 0 < s < 1, is defined by hs(Ω) = inf E⊂Ω Ps(E) |E| , where Ps(E) = ∫ ℝN ∫ ℝN |χE(x) − χE(y)| |x − y| N+s dx dy, with χE denoting the characteristic function of the smooth subdomain E. The main purpose of this paper is to show that lim p→1 + |ϕ s p | 1−p L∞(Ω) = hs(Ω) = lim p→1 + |ϕ s p | 1−p L 1(Ω) , where ϕ s p is the fractional (s, p)-torsion function of Ω, that is, the solution of the Dirichlet problem for the fractional p-Laplacian: −(∆) s p u = 1 in Ω, u = 0 in ℝN \ Ω. For this, we derive suitable bounds for the first eigenvalue λ s 1,p (Ω) of the fractional p-Laplacian operator in terms of ϕ s p . We also show that ϕ s p minimizes the (s, p)-Gagliardo seminorm in ℝN, among the functions normalized by the L 1 -norm. | pt_BR |
dc.identifier.citation | BUENO, H. P. et al. Torsion functions and the Cheeger problem: a fractional approach. Advanced Nonlinear Studies, v. 16, p. 689-697, 2016. Disponível em: <https://www.degruyter.com/view/j/ans.2016.16.issue-4/ans-2015-5048/ans-2015-5048.xml>. Acesso em: 02 out. 2017. | pt_BR |
dc.identifier.doi | https://doi.org/10.1515/ans-2015-5048 | |
dc.identifier.issn | 1536-1365 | |
dc.identifier.uri | http://www.repositorio.ufop.br/handle/123456789/9844 | |
dc.identifier.uri2 | https://www.degruyter.com/view/j/ans.2016.16.issue-4/ans-2015-5048/ans-2015-5048.xml | pt_BR |
dc.language.iso | pt_BR | pt_BR |
dc.rights | restrito | pt_BR |
dc.subject | Fractional cheeger problem | pt_BR |
dc.subject | Torsion functions | pt_BR |
dc.subject | Fractional | pt_BR |
dc.subject | Fractional p-Laplacian | pt_BR |
dc.title | Torsion functions and the Cheeger problem : a fractional approach. | pt_BR |
dc.type | Artigo publicado em periodico | pt_BR |
Arquivos
Pacote original
1 - 1 de 1
Nenhuma Miniatura Disponível
- Nome:
- ARTIGO_TorsionFunctionCheeger.pdf
- Tamanho:
- 589.33 KB
- Formato:
- Adobe Portable Document Format
Licença do pacote
1 - 1 de 1
Nenhuma Miniatura Disponível
- Nome:
- license.txt
- Tamanho:
- 924 B
- Formato:
- Item-specific license agreed upon to submission
- Descrição: