Torsion functions and the Cheeger problem : a fractional approach.

dc.contributor.authorBueno, Hamilton Prado
dc.contributor.authorErcole, Grey
dc.contributor.authorMacedo, Shirley da Silva
dc.contributor.authorPereira, Gilberto A.
dc.date.accessioned2018-04-16T11:30:11Z
dc.date.available2018-04-16T11:30:11Z
dc.date.issued2016
dc.description.abstractLet Ω be a Lipschitz bounded domain of ℝN, N ≥ 2. The fractional Cheeger constant hs(Ω), 0 < s < 1, is defined by hs(Ω) = inf E⊂Ω Ps(E) |E| , where Ps(E) = ∫ ℝN ∫ ℝN |χE(x) − χE(y)| |x − y| N+s dx dy, with χE denoting the characteristic function of the smooth subdomain E. The main purpose of this paper is to show that lim p→1 + |ϕ s p | 1−p L∞(Ω) = hs(Ω) = lim p→1 + |ϕ s p | 1−p L 1(Ω) , where ϕ s p is the fractional (s, p)-torsion function of Ω, that is, the solution of the Dirichlet problem for the fractional p-Laplacian: −(∆) s p u = 1 in Ω, u = 0 in ℝN \ Ω. For this, we derive suitable bounds for the first eigenvalue λ s 1,p (Ω) of the fractional p-Laplacian operator in terms of ϕ s p . We also show that ϕ s p minimizes the (s, p)-Gagliardo seminorm in ℝN, among the functions normalized by the L 1 -norm.pt_BR
dc.identifier.citationBUENO, H. P. et al. Torsion functions and the Cheeger problem: a fractional approach. Advanced Nonlinear Studies, v. 16, p. 689-697, 2016. Disponível em: <https://www.degruyter.com/view/j/ans.2016.16.issue-4/ans-2015-5048/ans-2015-5048.xml>. Acesso em: 02 out. 2017.pt_BR
dc.identifier.doihttps://doi.org/10.1515/ans-2015-5048
dc.identifier.issn1536-1365
dc.identifier.urihttp://www.repositorio.ufop.br/handle/123456789/9844
dc.identifier.uri2https://www.degruyter.com/view/j/ans.2016.16.issue-4/ans-2015-5048/ans-2015-5048.xmlpt_BR
dc.language.isopt_BRpt_BR
dc.rightsrestritopt_BR
dc.subjectFractional cheeger problempt_BR
dc.subjectTorsion functionspt_BR
dc.subjectFractionalpt_BR
dc.subjectFractional p-Laplacianpt_BR
dc.titleTorsion functions and the Cheeger problem : a fractional approach.pt_BR
dc.typeArtigo publicado em periodicopt_BR

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
ARTIGO_TorsionFunctionCheeger.pdf
Tamanho:
589.33 KB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
license.txt
Tamanho:
924 B
Formato:
Item-specific license agreed upon to submission
Descrição: