DECEA - Departamento de Ciências Exatas e Aplicadas

URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/551

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 1 de 1
  • Imagem de Miniatura
    Item
    The diffusive epidemic process on Barabasi–Albert networks.
    (2021) Alves, Tayroni Francisco de Alencar; Alves, Gladstone de Alencar; Macedo Filho, Antonio de; Ferreira, Ronan Silva; Lima, Francisco Welington de Sousa
    We present a modified diffusive epidemic process (DEP) that has a finite threshold on scale-free graphs, motivated by the COVID-19 pandemic. The DEP describes the epidemic spreading of a disease in a non-sedentary population, which can describe the spreading of a real disease. Our main modification is to use the Gillespie algorithm with a reaction time tmax, exponentially distributed with mean inversely proportional to the node population in order to model the individuals’ interactions. Our simulation results of the modified model on Barabasi–Albert networks are compatible with a continuous absorbing-active phase transition when increasing the average concentration. The transition obeys the mean-field critical exponents β = 1, γ = 0 and ν⊥ = 1/2. In addition, the system presents logarithmic corrections with pseudo-exponents β = γ = −3/2 on the order parameter and its fluctuations, respectively. The most evident implication of our simulation results is if the individuals avoid social interactions in order to not spread a disease, this leads the system to have a finite threshold in scale-free graphs.