DECEA - Departamento de Ciências Exatas e Aplicadas
URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/551
Navegar
2 resultados
Resultados da Pesquisa
Item Torsion functions and the Cheeger problem : a fractional approach.(2016) Bueno, Hamilton Prado; Ercole, Grey; Macedo, Shirley da Silva; Pereira, Gilberto A.Let Ω be a Lipschitz bounded domain of ℝN, N ≥ 2. The fractional Cheeger constant hs(Ω), 0 < s < 1, is defined by hs(Ω) = inf E⊂Ω Ps(E) |E| , where Ps(E) = ∫ ℝN ∫ ℝN |χE(x) − χE(y)| |x − y| N+s dx dy, with χE denoting the characteristic function of the smooth subdomain E. The main purpose of this paper is to show that lim p→1 + |ϕ s p | 1−p L∞(Ω) = hs(Ω) = lim p→1 + |ϕ s p | 1−p L 1(Ω) , where ϕ s p is the fractional (s, p)-torsion function of Ω, that is, the solution of the Dirichlet problem for the fractional p-Laplacian: −(∆) s p u = 1 in Ω, u = 0 in ℝN \ Ω. For this, we derive suitable bounds for the first eigenvalue λ s 1,p (Ω) of the fractional p-Laplacian operator in terms of ϕ s p . We also show that ϕ s p minimizes the (s, p)-Gagliardo seminorm in ℝN, among the functions normalized by the L 1 -norm.Item Asymptotic behavior of the p-torsion functions as p goes to 1.(2016) Bueno, Hamilton Prado; Ercole, Grey; Macedo, Shirley da SilvaLet Ω be a Lipschitz bounded domain of RN, N ≥ 2, and let up ∈ W1,p 0 (Ω) denote the p-torsion function of Ω, p > 1. It is observed that the value 1 for the Cheeger constant h(Ω) is threshold with respect to the asymptotic behavior of up, as p → 1+, in the following sense: when h(Ω) > 1, one has limp→1+ up L∞(Ω) = 0, and when h(Ω) < 1, one has limp→1+ up L∞(Ω) = ∞. In the case h(Ω) = 1, it is proved that lim supp→1+ up L∞(Ω) < ∞. For a radial annulus Ωa,b, with inner radius a and outer radius b, it is proved that limp→1+ up L∞(Ωa,b) = 0 when h(Ωa,b) = 1.