DEMIN - Departamento de Engenharia de Minas

URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/510

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Item
    Validation of coupled simulation of excavations in saturated clay : Camboinhas case history.
    (2011) Nogueira, Christianne de Lyra; Azevedo, Roberto Francisco de; Zornberg, Jorge Gabriel
    This paper presents the results of an elastoplastic finite-element back analysis of an excavation made on a saturated soft organic clay deposit in Rio de Janeiro, Brazil. The excavation was conducted as part of an urbanization program, in which artificial islands were to be created in a swamp along the margins of the Camboinhas Lagoon. An extensive laboratory testing program was performed on undisturbed soil samples to characterize the stress-strain-strength behavior of the involved materials. Results from this laboratory testing program were used to calibrate a nonassociated elastoplastic constitutive model implemented in the ANLOG (Nonlinear Analysis of Geotechnical Problems) code. This code is based on the finite-element method and is capable of conducting fully coupled analyses by using a variety of constitutive models. Coupled analyses were performed to simulate the Camboinhas excavation, which was conducted under plane strain condition. Field measurements of both displacements and pore-water pressures obtained during the excavation are compared with the results of the numerical simulation. Analyses of the results show that monitored in situ and numerical results are in good agreement.
  • Item
    Coupled analyses of excavations in saturated soil.
    (2009) Nogueira, Christianne de Lyra; Azevedo, Roberto Francisco de; Zornberg, Jorge Gabriel
    This paper presents finite-element analyses of excavations by using a coupled deformation and flow formulation. Specific numerical procedures were implemented into the finite-element codes to simulate the excavation construction and to solve the nonlinear coupled system. The paper discusses results of two generic excavations, with analyses conducted using different constitutive models and different excavation rates. Although the constitutive model affected the magnitude and distribution of the excess of the pore-water pressure due to the excavation process, the constitutive models only slightly influenced the dissipation rate of the excess pore-water pressure. Excavation rates that were one order of magnitude smaller than the hydraulic conductivity of the soil led to results representative of drained processes. Because of the slow rate needed for drained conditions, partially drained conditions normally prevail during excavations, highlighting the importance of coupled analyses.