DECIV - Departamento de Engenharia Civil

URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/496

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 3 de 3
  • Item
    Steel slags in cement-based composites : an ultimate review on characterization, applications and performance.
    (2021) Martins, Ana Carolina Pereira; Carvalho, José Maria Franco de; Costa, Laís Cristina Barbosa; Andrade, Humberto Dias; Melo, Tainá Varela de; Ribeiro, José Carlos Lopes; Pedroti, Leonardo Gonçalves; Peixoto, Ricardo André Fiorotti
    Steel slags are by-products generated in high volumes in the steel industry. Their main constituents are calcium, silicon, ferric, aluminum, and magnesium oxides. Larnite, alite, brownmillerite, and ferrite are also found. The presence of expansive compounds cause concern when used in cement-based compos- ites; however, mitigating routes have been proposed. Activation techniques improve the binding proper- ties of steel slag powder, potentiating its use as a supplementary cementitious material (SCM). As an aggregate, steel slag presents good morphological and mechanical properties. Promising mechanical and durability performances in cement-based composites encourage further research to promote the use of steel slag.
  • Item
    Mechanical performance and resistance to carbonation of steel slag reinforced concrete.
    (2021) Andrade, Humberto Dias; Carvalho, José Maria Franco de; Costa, Laís Cristina Barbosa; Elói, Fernanda Pereira da Fonseca; Silva, Keoma Defáveri do Carmo e; Peixoto, Ricardo André Fiorotti
    The use of residues as alternative materials in the production of cement-based composites is significantly growing since it embraces the circular economy concepts. This alternative reduces the demand for nat- ural resources by the construction sector and provides a proper destination for a range of industrial resi- dues. However, the alternative materials must perform properly for safe applications. In this way, the steel slag, a residue of the steel industry, stands out. The steel slag is already applied in some cement- based composites showing enhancement in the mechanical performance, although its durability is barely evaluated. So, this research produced eco-friendly structural concretes of three compressive strength classes and for similar application parameters. The evaluations were performed in concretes with total replacement of conventional aggregates by steel slag aggregates, containing no chemical admixtures and in the presence of a PCE-based superplasticizer. The mechanical performance and resistance to car- bonation of these products were evaluated. An accelerated carbonation test was proposed and adopted to better understand the carbonation phenomenon within the research timeframe. The steel slag concretes presented higher compressive strengths and reductions in carbonation depths up to 60% compared to conventional ones. These results corroborate the technical feasibility of applying steel slag as aggregates in cement-based composites.
  • Item
    Mortars for laying and coating produced with iron ore tailings from tailing dams.
    (2016) Fontes, Wanna Carvalho; Mendes, Júlia Castro; Silva, Sidney Nicodemos da; Peixoto, Ricardo André Fiorotti
    Aiming to mitigate the environmental impact of the iron mining industry, this paper evaluates the technical feasibility of using iron ore tailings from tailing dams (IOT) as construction material, for mortars for laying and coating. Three mixtures were produced: conventional mortars, mortars with complete replacement of natural aggregate by IOT, and mortars replacing lime by IOT in proportions from 10% to 100%. IOT and mortars were characterised. Mortars with IOT showed increased bulk density, reduced levels of incorporated air, an increment in the amount of mixing water, and improved mechanical properties when compared with conventional ones.