DECAT - Departamento de Controle e Automação

URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/490

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 3 de 3
  • Item
    Desenvolvimento de uma solução embarcada para identificação de falhas em sistemas UPS (Uninterruptible Power Supply) por meio de aprendizado de máquina.
    (2023) Andrade, Patrick Rafael Portes; Pessin, Gustavo; Pessin, Gustavo; Coelho, Bruno Nazário; Rocha Filho, Geraldo Pereira
    Sistemas que utilizam algoritmos de Machine Learning (ML) para classificação e predição de informações são cada vez mais comuns na indústria. Relatórios que unem inteligência analítica e big data são capazes de prover insights preciosos sobre comportamentos de clientes, tendências de mercado e oportunidades de negócio, contudo, o uso de IA embarcado no chão de fábrica ainda é reduzido. Com avanço do poder de processamento de microcontroladores e utilização de técnicas de otimização de algoritmos de ML, surgiram algumas bibliotecas dedicadas para embarcar modelos de ML em placas microcontroladas de baixo custo. O sistema UPS é de extrema importância para o Sistema Elétrico de Potência (SEP), uma vez que é o responsável por garantir monitoramento e comando no caso da falta de tensão primária. O retificador trifásico é a parte mais sensível do sistema UPS e é o mais susceptível a falhas. Os retificadores atuais possuem um sistema de alarmes para indicar falhas, todavia esses alarmes, na maioria das vezes, vêm de forma tardia, quando o equipamento parou de funcionar. Esse trabalho propõe o desenvolvimento de uma solução embarcada utilizando a placa Arduino Nano 33 BLE Sense e algoritmos de ML para identificação de falhas em sistemas UPS através do processamento do som emitido por esses equipamentos. Foram obtidos resultados com acurácia de 99,74% para identificação de retificadores com defeito.
  • Item
    Controle por aprendizagem por reforço aplicado aos processos : CSTR e Espessador.
    (2022) Bitarães, Santino Martins; Euzebio, Thiago Antonio Melo; Silva, Moisés Tavares da; Euzebio, Thiago Antonio Melo; Silva, Moisés Tavares da; Braga, Marcio Feliciano; Cota, Luciano Perdigão; Araújo, José Mário
    O controle por aprendizagem por reforço busca melhorar seu desempenho pelo aprendizado obtido ao interagir com o processo. As ações de controle deste tipo de controlador são norteadas unicamente por uma função de recompensa. O algoritmo Augmented Random Search (ARS) é uma método de aprendizagem por reforço baseado em busca aleatória simples com melhorias no processamento das recompensas e dos estados. As características apresentadas pela aprendizagem por reforço permitirá sua utilização em processos complexos e não lineares, como o tanque com agitação contínua (CSTR) e o espessador. Esses dois processos são complexos e apresentam comportamentos diferentes nos pontos de operação. Para o problema do CSTR, os estados são as referências do processo (referência atual e uma mudança de referência), as ações são os parâmetros do controlador PI e a recompensa foi definida em função do erro entre a referência e variável do processo (temperatura do reator). No caso do espessador os estados são o erro e a concentração do underflow, a ação é o ajuste direto da vazão de underflow e a função de recompensa foi definida em função do erro e da variação da ação de controle. Para o simulador do CSTR foi utilizado o python e para o espessador, utilizamos o Matlab. A sintonia proposta pelo ARS para o problema do CSTR apresenta uma melhoria de 8,3% (IAE), considerando o mesmo ponto de operação, em comparação com o benchmark. Já o o algoritmo ARS foi 19% (IAE) melhor na tarefa de controlar diretamente o espessador.
  • Item
    Proposta de sensores virtuais baseados em aprendizado de máquina para estimativa de parametros de qualidade na etapa de pelotamento de minério de ferro.
    (2021) Dias, Fabricio Bertholi; Pessin, Gustavo; Pessin, Gustavo; Euzebio, Thiago Antonio Melo; Coelho, Bruno Nazário; Souza, Jefferson Rodrigo de
    O processo industrial de pelotização de minério de ferro foi desenvolvido objetivando-se o beneficiamento e aproveitamento comercial dos finos de minério. O pelotamento é a etapa deste processo responsável pela formação das pelotas, sendo influenciado por diversas variáveis, com reflexos diretos sobre a qualidade do produto. Logo, é importante que certas características físicas, desejadas para as pelotas, sejam continuamente monitoradas durante o processo produtivo. Atualmente o processo de garantia da qualidade é feito através de ensaios em laboratórios, atividade com alta latência de resposta. Dada a necessidade de aumento de eficiência deste processo e o respectivo impacto em toda a cadeia produtiva, este trabalho propõe a aplicação de um sensor virtual para estimar parâmetros de qualidade na etapa de pelotamento em uma usina de pelotização de minério de ferro. Foram comparadas 3 técnicas de aprendizado de máquinas: Redes Neurais Artificias, Random Forests e KNN – K Nearest Neighbors. Foi proposto um modelo de regressão baseado na coletânea nos melhores modelos individuais comparados. A identificação das variáveis que mais influenciam nos parâmetros de qualidade de pelotas cruas de minério de ferro é descrita, fundamentando-se na teoria da metalurgia do processo de pelotização. As variáveis de processo candidatas (features / targets) ao modelo foram tratadas, formando a base de dados para a geração do modelo de predição. Os modelos dos sensores virtuais foram validados com sucesso, obtendo-se R2 de 0,944 e RMSE de 0,075 para o modelo de coletânea, comprovando a importância de variáveis, tais como dosagens de aglomerantes, taxas de dosagem e rotação dos discos de pelotamento, volumes de produção e retorno. A validação dos modelos evidencia seu potencial para aplicação em um ambiente real, e abre espaço para continuidade de estudos futuros.