DECAT - Departamento de Controle e Automação
URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/490
Navegar
1 resultados
Resultados da Pesquisa
Item Aprendizado de máquina aplicado à predição de falhas em caminhão fora de estrada.(2020) Dias, Aldilene Oliveira Maia; Guimarães, Frederico Gadelha; Reis, Agnaldo José da Rocha; Sabino, Jodelson Aguilar; Guimarães, Frederico Gadelha; Reis, Agnaldo José da Rocha; Sabino, Jodelson Aguilar; Silva, Rodrigo César Pedrosa; Ribeiro, Roberto Gomes; Silva, Petrônio Cândido de Lima eNo setor mineral, o caminhão fora de estrada é o meio mais difundido de transporte de minério. Trata-se de um equipamento composto por vários componentes, tornando complexas atividades de manutenção. Este trabalho navega no campo da análise preditiva, como apoio na tomada de decisão do processo de manutenção destes ativos. A proposta envolve modelar um preditor de falhas, que subsidie o planejamento e a programação de eventos de manutenção. Isso reduz a indisponibilidade não programada do equipamento, aumenta o tempo médio entre falhas e embasa a manutenção por condição. Esta estratégia gera ganhos de confiabilidade, aumento no desempenho operacional, financeiro e na competitividade do negócio. Definiu-se a variável-alvo como “tempo para falha do caminhão” e assumiu-se a referência de 20 dias. Diversos algoritmos foram experimentados (RNA, XG Boost AS, C&R Tree, C5.0, CHAID 1) e obteve-se o melhor resultado com o XG Boost AS. O modelo experimental indica a falha no caminhão 20 dias antes, com uma precisão média de 97,90% e recall de 64,17%.