DEFAR - Departamento de Farmácia

URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/530

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Item
    Photodynamic therapy with the dual-mode association of IR780 to PEG-PLA nanocapsules and the effects on human breast cancer cells.
    (2022) Machado, Marina Guimarães Carvalho; Oliveira, Maria Alice de; Lanna, Elisa Gomes; Siqueira, Raoni Pais; Lana, Gwenaelle Elza Nathalie Pound; Branquinho, Renata Tupinambá; Mosqueira, Vanessa Carla Furtado
    IR780 is a near-infrared fluorescent dye, which can be applied as a photosensitizer in photodynamic (PDT) and photothermal (PTT) therapies and as a biodistribution tracer in imaging techniques. We investigated the growth and migration inhibition and mechanism of death of breast tumor cells, MCF-7 and MDA-MB-231, exposed to polymeric nanocapsules (NC) comprising IR780 covalently linked to the biodegradable polymer PLA (IR-PLA) and IR780 physically encapsulated (IR780-NC) in vitro. Both types of NC had mean diameters around 120 nm and zeta potentials around − 40 mV. IR-PLA-NC was less cytotoxic than IR780 NC to a non-tumorigenic mammary epithelial cell line, MCF-10A, which is an important aspect of selectivity. Free-IR780 was more cytotoxic than IR- PLA-NC for MCF-7 and MDA-MB-231 cells after illumination with a 808 nm laser. IR-PLA NC was effective to inhibit colony formation (50%) and migration (30–40%) for both cancer cell lines. MDA-MB-231 cells were less sensitive to all IR780 formulations compared to MCF-7 cells. Cell uptake was higher with IR-PLA-NC than with IR780-NC and free-IR780 in both cancer cell lines (p < 0.05). NC uptake was higher in MCF-7 than in MDA-MB- 231 cells. IR-PLA-NC induced a higher percentage of apoptosis upon illumination in MDA-MB-231 than in MCF-7 cells. The necrosis mechanism of death predominated in treatments with free-IR780 and with encapsulated IR780 NC, suggestive of damages at the plasma membrane. IR780 conjugated with PLA increased the apoptotic pathway and demonstrated potential as a multifunctional theranostic agent for breast cancer treatment with increased cellular uptake, photodynamic activity and more reliable tracking in cell-image studies.
  • Item
    Labeling PLA-PEG nanocarriers with IR780 : physical entrapment versus covalent attachment to polylactide.
    (2020) Machado, Marina Guimarães Carvalho; Lana, Gwenaelle Elza Nathalie Pound; Oliveira, Maria Alice de; Lanna, Elisa Gomes; Fialho, Márcia Célia Pacheco; Brito, Ana Carolina Ferreira de; Barboza, Ana Paula Moreira; Soares, Rodrigo Dian de Oliveira Aguiar; Mosqueira, Vanessa Carla Furtado
    Near-infrared fluorescent dyes, such as IR780, are promising theranostics, acting as photosensitizers for photodynamic therapy and in vivo tracers in image-guided diagnosis. This work compared the uptake by macrophage-like cells of IR780 either physically associated or covalently attached to poly(D,L-lactide) (PLA) formulated as polymeric nanocapsules (NC) from a blend of PLA homopolymer and PLA-PEG block copolymer. The physicochemical characterization of both NC was conducted using asymmetric flow field-flow fractionation (AF4) analysis with static and dynamic light scattering and atomic force micros copy. The interaction of IR780 with serum proteins was evidenced by AF4 with fluorescence detection and flow cytometry in cell uptake studies. The average diameters of NC were around 120 nm and zeta potentials close to -40 mV for all NC. NC uptake by cells in different media and experimental conditions shows significantly lower fluorescence intensities for IR780 covalently linked to PLA and correspondingly low quantitative uptake. Different mechanisms of internalization were evidenced depending on the IR780 type of association to NC. Serum proteins mediate IR780 interaction with cells in a dose-dependent manner. Our results show that non-covalently linked IR780 was released from NC and accumulated in macrophage cells. Oppositely, IR780 conjugated to PLA provides stable association with NC, and its fluorescence is representative of cell uptake of the nanocarrier itself. This work strongly reinforces the importance of covalent attachment of a fluorescence dye such as IR780 to the nanocarrier to study their interaction with cells in vitro and to obtain reliable tracking in image-guided therapy.