DEFAR - Departamento de Farmácia
URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/530
Navegar
2 resultados
Resultados da Pesquisa
Item PLA-PEG nanocapsules radiolabeled with 99mTechnetium-HMPAO : release properties and physicochemical characterization by atomic force microscopy and photon correlation spectroscopy.(2008) Pereira, Maira Alves; Mosqueira, Vanessa Carla Furtado; Vilela, José Mário Carneiro; Andrade, Margareth Spangler; Ramaldes, Gilson Andrade; Cardoso, Valbert NascimentoThe present work describes the preparation, characterization and labelling of conventional and surface-modified nanocapsules (NC) with 99mTc-HMPAO. The size, size distribution and homogeneity were determined by photon correlation spectroscopy (PCS) and zeta potential by laser doppler anemometry. The morphology and the structural organization were evaluated by atomic force microscopy (AFM). The stability and release profile of the NC were determined in vitro in plasma. The results showed that the use of methylene blue induces significant increase in the encapsulation efficiency of 99mTc-HMPAO, from 24.4 to 49.8% in PLANC and 22.37 to 52.93% in the case of PLA-PEGNC(P < 0.05) by improving the complex stabilization. The average diameter of NC calculated by PCS varied from 216 to 323 nm, while the average diameter determined by AFM varied from 238 to 426 nm. The AFM analysis of diameter/height ratios suggested a greater homogeneity of the surface-modified PLAPEG nanocapsules compared to PLA NC concerning their flattening properties. The in vitro release of the 99mTc-HMPAO in plasma medium was faster for the conventional PLA NC than for the surface-modified NC. For the latter, 60% of the radioactivity remained associated with NC, even after 12h of incubation. The results suggest that the surface-modified 99mTc-HMPAO-PLA PEG NCwas more stable against label leakage in the presence of proteins and could present better performance as radiotracer in vivo.Item Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modifed nanocapsules.(2001) Mosqueira, Vanessa Carla Furtado; Legrand, Philippe; Gulik, Annette; Bourdon, Olivier; Gref, Ruxandra; Labarre, Denis; Barratt, GillianThe aim of our work was to examine the relationship between modi"cations of the surface of nanocapsules (NC) by adsorption or covalent grafting of poly(ethylene oxide) (PEG), and changes in their phospholipid (PL) content on complement activation (C3 cleavage) and on uptake by macrophages. The physicochemical characterization of the NC included an investigation of their properties, such as surface charge, size, hydrophilicity, morphology and homogeneity. This is the "rst time that such properties have been correlated with biological interactions for NC, a novel carrier system with a structure more complex than nanospheres. C3 crossed immunoelectrophoresis revealed the reduced activation for NC with longer PEG chain and higher density, although all formulations induced C3 cleavage to a lesser or greater extent. NC bearing PEG covalently bound to the surface were weaker activators of complement than plain PLA [poly(D,L-lactide)] NC or nanospheres (NS). Furthermore, the #uorescent/confocal microscopy of J774A1 cells in contact with NC reveal a dramatically reduced interaction with PEG-bearing NC. However, the way in which PEG was attached (covalent or adsorbed) seemed to a!ect the mechanism of uptake. Taken together, these results suggest that the low level of protein binding to NC covered with a high density of 20 kDa PEG chains is likely to be due to the steric barriers surrounding these particles, which prevents protein adsorption and reduces their interaction with macrophages. 2001 Elsevier Science Ltd. All rights reserved.