DEFAR - Departamento de Farmácia

URI permanente desta comunidadehttp://www.hml.repositorio.ufop.br/handle/123456789/530

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 6 de 6
  • Item
    Molecular cloning of a gene involved in glucose sensing in the yeast Saccharomyces cerevisiae.
    (1993) Aelst, Linda Van; Hohmann, Stefan; Bulaya, Botchaka; Koning, Wim de; Sierkstra, Laurens; Neves, Maria José; Luyten, Kattie; Alijo, Rafael; Ramos, José; Coccetti, Paola; Martegani, Enzo; Rocha, Neuza Maria de Magalhaes; Brandão, Rogélio Lopes; Dijck, Patrick Van; Vanhalewyn, Mieke; Durnez, Peter; Jans, Arnold W. H; Thevelein, Johan Maria
    Cells of the yeast Saccharomyces cerevisiae display a wide range of glucose-induced regulatory phenomena, including glucose-induced activation of the RAS-adenylate cyclase pathway and phosphatidylinosrtot turnover, rapid post-translatronal effects on the activity of different enzymes as well as long-term effects at the transcriptional level. A gene called GGS1 (for general Glucose Sensor) that is apparently required for the glucose-induced regulatory effects and several ggsi aHeles (fic/pf, bypi and cifi) has been cloned and characterized. A GGS1 homologue is present in Methanobacterium thermoautotrophicum. Yeast ggsi mutants are unable to grow on glucose or Received 25 November, 1992; revised and accepted 15 February, 1993. •For correspondence. Tel. (16) 220931; Fax (16) 204415. tThese two authors contributed equally to this paper. related readily fermentable sugars, apparently owing to unrestricted influx of sugar Into glycolysis, resulting in its rapid deregulation. Levels of intracellular free glucose and metabolites measured over a period of a few minutes after addition of glucose to cells of a ggsi^ strain are consistent with our previous suggestion of a functional interaction between a sugar transporter, a sugar kinase and the GGS1 gene product. Such a glucose-sensing system might both restrict the influx of glucose and activate several signal transduction pathways, leading to the wide range of glucose-induced regulatory phenomena. Deregulation of these pathways in ggsi mutants might explain phenotypic defects observed in the absence of glucose, e.g. the inability of ggsi diploids to sporulate.
  • Item
    The PLC1 encoded phospholipase C in the yeast Saccharomyces cerevisiae is essential for glucose-induced phosphatidylinositol turnover and activation of plasma membrane H -ATPase.
    (1998) Coccetti, Paola; Tisi, Renata; Martegani, Enzo; Teixeira, Leonardo Souza; Brandão, Rogélio Lopes; Castro, Ieso de Miranda; Thevelein, Johan Maria
    Addition of glucose to glucose-deprived cells of the yeast Saccharomyces cerevisiae triggers rapid turnover of phosphatidylinositol, phosphatidylinositol-phosphate and phosphatidylinositol 4,5-bisphosphate. Glucose stimulation of PI turnover was measured both as an increase in the specific ratio of 32P-labeling and as an increase in the level of diacylglycerol after addition of glucose. Glucose also causes rapid activation of plasma membrane H.-ATPase. We show that in a mutant lacking the PLC1 encoded phospholipase C, both processes were strongly reduced. Compound 48/80, a known inhibitor of mammalian phospholipase C, inhibits both processes. However, activation of the plasma membrane H.- ATPase is only inhibited by concentrations of compound 48/80 that strongly inhibit phospholipid turnover. Growth was inhibited by even lower concentrations. Our data suggest that in yeast cells, glucose triggers through activation of the PLC1 gene product a signaling pathway initiated by phosphatidylinositol turnover and involved in activation of the plasma membrane H.-ATPase.
  • Item
    Calcium signaling and sugar-induced activation of plasma membrane H+-ATPase in Saccharomyces cerevisiae cells.
    (2006) Trópia, Maria José Magalhães; Cardoso, Anamaria de Souza; Tisi, Renata; Fietto, Luciano Gomes; Fietto, Juliana Lopes Rangel; Martegani, Enzo; Castro, Ieso de Miranda; Brandão, Rogélio Lopes
    In this work, we show that glucose-induced activation of plasma membrane H+-ATPase from Saccharomyces cerevisiae is strongly dependent on calcium metabolism and that the glucose sensor Snf3p works in a parallel way with the G protein Gpa2p in the control of the pathway. The role of Snf3p is played by the Snf3p C-terminal tail, since in a strain with the deletion of the SNF3 gene, but also expressing a chimera protein formed by Hxt1p (a glucose transporter) and the Snf3p C-terminal tail, a normal glucose-activation process can be observed. We present evidences indicating that Snf3p would be the sensor for the internal signal (phosphorylated sugars) of this pathway that would connect calcium signaling and activation of the plasma membrane ATPase. We also show that Snf3p could be involved in the control of Pmc1p activity that would regulate the calcium availability in the cytosol.
  • Item
    Carbonyl cyanidem - chlorophenylhydrazone induced calcium signaling and activation of plasma membrane H1-ATPase in the yeast Saccharomyces cerevisiae.
    (2008) Pereira, Michele B. P.; Tisi, Renata; Fietto, Luciano Gomes; Cardoso, Anamaria de Souza; França, Mônica M.; Carvalho, Fernanda Machado de; Trópia, Maria José Magalhães; Martegani, Enzo; Castro, Ieso de Miranda; Brandão, Rogélio Lopes
    The plasma membrane H1-ATPase from Saccharomyces cerevisiae is an enzyme that plays a very important role in the yeast physiology. The addition of protonophores, such as 2,4-dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP), also triggers a clear in vivo activation of this enzyme. Here, we demonstrate that CCCP-induced activation of the plasma membrane H1-ATPase shares some similarities with the sugar-induced activation of the enzyme. Phospholipase C and protein kinase C activities are essential for this activation process while Gpa2p, a G protein involved in the glucose-induced activation of the ATPase, is not required. CCCP also induces a phospholipase Cdependent increase in intracellular calcium. Moreover, we show that the availability of extracellular calcium is required for CCCP stimulation of H1-ATPase, suggesting a possible connection between calcium signaling and activation of ATPase.
  • Item
    The involvement of calcium carriers and of the vacuole in the glucose-induced calcium signaling and activation of the plasma membrane H+-ATPase in Saccharomyces cerevisiae cells.
    (2012) Bouillet, Leoneide Érica Maduro; Cardoso, Anamaria de Souza; Perovano, Eduardo; Pereira, R. R.; Ribeiro, Erica Milena de Castro; Trópia, Maria José Magalhães; Fietto, Luciano Gomes; Tisi, Renata; Martegani, Enzo; Castro, Ieso de Miranda; Brandão, Rogélio Lopes
    Previous work from our laboratories demonstrated that the sugar-induced activation of plasma membrane H+-ATPase in Saccharomyces cerevisiae is dependent on calcium metabolism with the contribution of calcium influx from external medium. Our results demonstrate that a glucose-induced calcium (GIC) transporter, a new and still unidentified calcium carrier, sensitive to nifedipine and gadolinium and activated by glucose addition, seems to be partially involved in the glucose-induced activation of the plasma membrane H+-ATPase. On the other hand, the importance of calcium carriers that can release calcium from internal stores was analyzed in glucose-induced calcium signaling and activation of plasma membrane H+-ATPase, in experimental conditions presenting very low external calcium concentrations. Therefore the aim was also to investigate how the vacuole, through the participation of both Ca2+-ATPase Pmc1 and the TRP homologue calcium channel Yvc1 (respectively, encoded by the genes PMC1 and YVC1) contributes to control the intracellular calcium availability and the plasma membrane H+-ATPase activation in response to glucose. In strains presenting a single deletion in YVC1 gene or a double deletion in YVC1 and PMC1 genes, both glucose-induced calcium signaling and activation of the H+-ATPase are nearly abolished. These results suggest that Yvc1 calcium channel is an important component of this signal transduction pathway activated in response to glucose addition. We also found that by a still undefined mechanism Yvc1 activation seems to correlate with the changes in the intracellular level of IP3. Taken together, these data demonstrate that glucose addition to yeast cells exposed to low external calcium concentrations affects calcium uptake and the activity of the vacuolar calcium channel Yvc1, contributing to the occurrence of calcium signaling connected to plasma membrane H+-ATPase activation.
  • Item
    Glucose-induced calcium influx in budding yeast involves a novel calcium transport system and can activate calcineurin.
    (2011) Groppi, Silvia; Belotti, Fiorella; Brandão, Rogélio Lopes; Martegani, Enzo; Tisi, Renata
    Glucose addition to glucose-starved Saccharomyces cerevisiae cells triggers a quick and transient influx of calcium from the extracellular environment. In yeast at leasttwodifferent carrier systems were identified: a high affinity system, requiring Cch1 channel, and a low affinity system. Here we report that another calcium transport system exists in yeast, not yet identified, that can substitute the two known systems whenthey are inactivated. This systemwascalled GIC (for Glucose Induced Calcium) system and it is a high affinity calcium transport system, magnesium-sensitive but nickel-resistant. Moreover, GIC transport is sensitive to gadolinium and nifedipine, but it is not sensitive to inhibition by verapamil, which conversely behaves as an agonist on glucose response. GIC transport is fully functional in conditions when calcineurin is active, a serine/threonine specificity phosphatase involved in the regulation of calcium homeostasis and in many other cellular phenomena such as tolerance to high concentrations of Na+ and Li+, response to pheromones and gene transcription regulation. Here it is reported for the first time that calcineurin can also be activated by nutrients: the activation of Crz1 transcription factor by calcineurin was observed in derepressed cells after addition of glucose in the presence of extracellular calcium.